forked from hmphu/binary_options
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ui.R
249 lines (207 loc) · 17.1 KB
/
ui.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
library(shinyBS)
library(plotly)
"%+%" <- function(x,y) {paste(x,y,sep="")}
stock_names = readRDS("stock_names.rds")
fluidPage(
tags$head(tags$script(src="nav.js")),
shinyjs::useShinyjs(),
includeCSS("custom.css"),
navbarPage("MoneyPrinter 0.1",
tabPanel("Binary options",class="landing",icon = icon("info-circle",lib = "font-awesome"),
HTML("<div class='pcont'>
<span class='glyphicon glyphicon-education iconbig'></span>
<h2>Automated binary option trading</h2>
predict hourly/daily stock direction using machine learning<br>
and perform API based automated trading<br>
on <a href='http://www.investopedia.com/terms/b/binary-option.asp'>binary option</a>
platforms
</div>"),
tags$div(class="pcont",
actionButton("BUT_learn", "Learn",class="btn btn-primary"),
actionButton("BUT_sim", "Simulate",class="btn btn-primary"),
actionButton("BUT_res", "Results",class="btn btn-primary"),
actionButton("BUT_git", "Github",class="btn btn-primary", icon = icon("fa-github",lib = "font-awesome"),onclick = "window.open('https://github.com/KlausGlueckert/binary_options', '_blank')")
),
HTML("<div class='pcont'> <img class='big' src='bill.jpg'></div>"),
bsModal("MODAL_sim", "Simulate returns", "BUT_sim", size = "small",
tags$p("How much would you like to invest?"),
selectInput("i_modal_invest", "Invest $:", choices = list("5000" = 20, "10000" = 40,"25000" = 200), selected = 20),
actionButton("BUT_startsim", "Simluate",class="btn btn-primary")
),
bsModal("MODAL_learn", "Learn about binary options", "BUT_learn", size = "large",
HTML("<div class='pcont'>
<span class='glyphicon glyphicon-piggy-bank iconbig'></span>
<h2>What are binary options?</h2>
A <a href='http://www.investopedia.com/articles/active-trading/061114/guide-trading-binary-options-us.asp'>binary option</a> is a trading instrument
where one bets money on the direction of a stock (or currency, index) for a fixed time intervall.
In a simple form, the trader can profit a margin up to 100% per trade when correct, when incorrect looses up to
a maximum of 100% of the trade (but never more). There are regulated US-based and European-based binary options working
slightly differently.
</div>"),
HTML("<div class='pcont'> <img src='sp.jpg'></div>"),
HTML("<div class='pcont'>
<span class='glyphicon glyphicon-cloud-upload iconbig'></span>
<h2>Trading platform?</h2>
There are several regulated and unregulated trading platforms such as
<a href='http://www.stockpair.com'>Stockpair (EU)</a> and <a href='http://www.nadex.com'>Nadex (USA)</a>.
Some even offer <a href='https://www.stockpair.com/dev/trading-api'>trading APIs</a> for free.
One can start trading by loading an account with a few 100 dollar after a KYC check.
</div>"),
HTML("<div class='pcont'>
<span class='glyphicon glyphicon-info-sign iconbig'></span>
<h2>Whats special about binary options?</h2>
<div style='text-align:left'>
<ul>
<li>easy to understand</li>
<li>upside and downside are defined (no market risk)</li>
<li>no extra or minimal trading fees</li>
<li>no security deposits due to hedging risk</li>
<li>tradable every second</li>
<li>trading APIs, no expensive tools like <a href='https://www.interactivebrokers.com/en/home.php'>interactive brokers</a></li>
<li>human trading on 'gambling' platforms, good for pattern recognition</li>
<li>in Europe: no day trading licence</li>
</ul></div>
</div>"),
HTML("<div class='pcont'>
<span class='glyphicon glyphicon-info-sign iconbig'></span>
<h2>US vs. Europe style binary options?</h2>
European style binary options just let you 'gamble' on the direction of a stock with a fixed win-rate and loss-rate.
For example, on binary option platforms you bet $100 dollars on that Apple stock will go up in the next our.
If you are correct you receive 80% profit, you incorrect you loose your money. The win-loss ratio is asymetrical,
therefore you have to be better than random to trade profitably. US style binary options work with bid-ask spread and
are modelled after regular option trading. See this <a href='http://www.investopedia.com/articles/active-trading/061114/guide-trading-binary-options-us.asp'>investopedia article</a>.
</div>")
)
),
tabPanel("Simulation",id="tab_simulation",icon = icon("cubes",lib = "font-awesome"),
sidebarLayout(
sidebarPanel(
tags$label(class="boxhead","Settings binary:"),tags$hr(),
sliderInput("i_trade", "Trade size ($):", min = 20, max = 200, value = 20, step = 20,pre = "$", sep = ","),
sliderInput("i_alert_day", "Trades per day:",min = 1, max = 10, value = 1, step = 1,sep = ","),
sliderInput("i_hit", "Model Accuracy or hit rate:", min = 50, max = 100, value = 60, step = 2, pre = "%", sep = ","
,animate=animationOptions(interval=3000, loop=F)
),
sliderInput("i_bin_win", "Per trade return, direction right:",min = 80, max = 100, value = 80, step = 10,pre = "%", sep = ","),
sliderInput("i_bin_loss", "Per trade loss, direction wrong:",min = 80, max = 100, value = 100, step = 10,pre = "%", sep = ","),
tags$hr(),
tags$label(class="boxhead","Settings benchmark:"),tags$hr(),
sliderInput("i_sp500", "Yearly return S&P 500:",min = 7, max = 7, value = 7, step = 1, pre = "%", sep = ","),
sliderInput("i_hedge", "Yearly return hedge fund:",min = 11, max = 11, value = 11, step = 1, pre = "%", sep = ",")
,width=2),
mainPanel(
tags$div(class = "well plot",
tags$label(class="boxhead","Simulated return 1 year: "),tags$hr(),
fluidRow( column(2,HTML("<div class='kpi_head kpi'>Type</div>") ),
column(2,HTML("<div class='kpi_head kpi'>%Return</div>")),
column(2,HTML("<div class='kpi_head kpi'>$ Invested</div>")),
column(2,HTML("<div class='kpi_head kpi'>$ Total</div>")),
column(2,HTML("<div class='kpi_head kpi'>$ Profit</div>")),
column(2,HTML("<div class='kpi_head kpi'>$ Profit Month</div>"))
),
fluidRow( column(2,tags$div(class = "kpi","Binary" )),
column(2,tags$div(class = "well kpi_box kpi",id="BIN_MULTIPLE",textOutput("k_multiple")) ),
column(2,tags$div(class = "well kpi_box kpi",textOutput("k_invested")) ),
column(2,tags$div(class = "well kpi_box kpi",textOutput("k_total")) ),
column(2,tags$div(class = "well kpi_box kpi",textOutput("k_profit")) ),
column(2,tags$div(class = "well kpi_box kpi",textOutput("k_profit_month")) )
),
fluidRow( column(2,tags$div(class = "kpi","S&P500" )),
column(2,tags$div(class = "well kpi_box kpi",textOutput("sp_multiple")) ),
column(2,tags$div(class = "well kpi_box kpi",textOutput("sp_invested")) ),
column(2,tags$div(class = "well kpi_box kpi",textOutput("sp_total")) ),
column(2,tags$div(class = "well kpi_box kpi",textOutput("sp_profit")) ),
column(2,tags$div(class = "well kpi_box kpi",textOutput("sp_profit_month")) )
),
fluidRow( column(2,tags$div(class = "kpi","Hedge Fund Index" )),
column(2,tags$div(class = "well kpi_box kpi",textOutput("he_multiple")) ),
column(2,tags$div(class = "well kpi_box kpi",textOutput("he_invested")) ),
column(2,tags$div(class = "well kpi_box kpi",textOutput("he_total")) ),
column(2,tags$div(class = "well kpi_box kpi",textOutput("he_profit")) ),
column(2,tags$div(class = "well kpi_box kpi",textOutput("he_profit_month")) )
)
),
tags$div(class = "well plot",
tags$label(class="boxhead","Profit 1 year (250 trading days): "),tags$hr(),
plotlyOutput("example_plot")
)
)
)
),
tabPanel("Stock Directions",icon = icon("bar-chart-o"),
sidebarLayout(
sidebarPanel(
#absolutePanel(
tags$div(class = "well plot",
tags$label(class="boxhead","Settings:"),tags$hr(),
selectInput("i_lag", "Time lag future:", choices = list("60 min" = 60, "15 min" = 15,"5 min" = 5), selected = "60m") ,
selectInput("i_year", "Year:", choices = list("2015"=2015,"2016"=2016), selected = list(2015), multiple = FALSE, selectize = FALSE) ,
sliderInput("i_thres", "% Change threshold:", min = 0, max = 4, value = 1, step = 1, pre = "%", sep = ",") ,
selectizeInput("i_stock", 'Select specific stocks:', choices = as.list(stock_names), multiple = TRUE)
#sliderInput("i_top", "Select upper/lower", min = 2, max = 20, value = 10, step = 2, sep = ",")
),
tags$div(class = "well plot",style="background-color: #fcf8e3 !important;",
tags$label(class="boxhead","Insights:"),tags$hr(),
tags$ul(
tags$li("stocks move together"),
tags$li("market openings are more volatile with higher % changes"),
tags$li("Tesla, Netflix and Twitter have up to 10x more directional % changes of 1% or more")
)
)
# , top = 50, left = 30)
,width = 2)
,
mainPanel(
fluidRow(
column(6,
tags$div(class = "well plot",
tags$label(class="boxhead","Median absolute deviation of %changes per hour"),tags$hr(),
plotlyOutput("plot_mad")
)),
column(6,
tags$div(class = "well plot",
tags$label(class="boxhead","Average # of direction changes per hour"),tags$hr(),
plotlyOutput("plot_sum")
))
),
fluidRow(
column(6,
tags$div(class = "well plot",
tags$label(class="boxhead","Total # Rise/fall per hour"),tags$hr(),
plotlyOutput("plot_ud")
)),
column(6,
tags$div(class = "well plot",
tags$label(class="boxhead","Total # Rise/fall"),tags$hr(),
plotlyOutput("plot_ud2")
))
)
)
)
),
tabPanel("next day prediction",icon = icon("gear",lib = "font-awesome"),
tags$div(class = "well plot",
tags$label(class="boxhead","Next day predictions"),tags$hr(),
DT::dataTableOutput("table_kpis")
),
fluidRow(
column(6,
tags$div(class = "well plot",
tags$label(class="boxhead","Best model ($20 per trade)"),tags$hr(),
plotlyOutput("sharp")
)
),
column(6,
tags$div(class = "well plot",
tags$label(class="boxhead","Benchmark"),tags$hr(),
DT::dataTableOutput("table_benchmark")
)
)
)
# ),
),
tabPanel("Live Trading",icon = icon("tachometer",lib = "font-awesome"),
HTML("coming soon...")
)
)
)