forked from davidboudin/AutoVCMaison
-
Notifications
You must be signed in to change notification settings - Fork 0
/
solver_encoder_circular.py
212 lines (157 loc) · 8.22 KB
/
solver_encoder_circular.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
from model_vc import Generator
import torch
import torch.nn.functional as F
import time
import datetime
import os
from make_metadata import load_speaker_embedding_model
from torch_utils import device
class Solver(object):
def __init__(self, vcc_loader, config):
"""Initialize configurations."""
# Data loader.
self.vcc_loader = vcc_loader
# Model configurations.
self.lambda_cd = config.lambda_cd
self.dim_neck = config.dim_neck
self.dim_emb = config.dim_emb
self.dim_pre = config.dim_pre
self.freq = config.freq
self.init_model = config.init_model
self.init_iter = 0
self.loss = []
self.speaker_embedder = load_speaker_embedding_model()
# Training configurations.
self.batch_size = config.batch_size
self.num_iters = config.num_iters
self.autosave = config.checkpoint_mode=='autosave'
self.saving_pace = config.save_every_n_iter
self.saving_prefix = config.save_path
self.learning_rate = config.learning_rate
self.use_speaker_loss = config.use_speaker_loss
# Miscellaneous.
self.device = device
self.log_step = config.log_step
# Build the model and tensorboard.
self.build_model()
if self.init_model:
self.load_trainable_model(self.init_model)
def build_model(self):
self.G = Generator(self.dim_neck, self.dim_emb, self.dim_pre, self.freq)
self.g_optimizer = torch.optim.Adam(self.G.parameters(), self.learning_rate)
self.G.to(self.device)
def save_model(self, path = 'autovc.ckpt'):
torch.save({
'G_state_dict': self.G.state_dict(),
'hyperparams':{'dim_neck': self.dim_neck, 'dim_emb': self.dim_emb, 'dim_pre': self.dim_pre, 'freq': self.freq}
}, path)
print("model state dict saved at ",path)
def load_model(self, path = 'autovc.ckpt'):
if os.path.exists(path):
print("Load weights from" + path + "for inference")
self.G.load_state_dict(torch.load(path))
self.G.eval()
else:
print("No checkpoint found, starting from scratch")
def load_trainable_model(self, path):
if os.path.exists(self.init_model):
try:
print(f'Loading model : {self.init_model}...')
checkpoint = torch.load(self.init_model)
self.G.load_state_dict(checkpoint['G_state_dict'])
self.g_optimizer.load_state_dict(checkpoint['g_optimizer_state_dict'])
self.loss = checkpoint["G_loss"]
self.init_iter = len(self.loss)
del checkpoint
except:
raise Exception(f'Could not load model at {self.init_model}.')
else:
raise Exception(f'Incorrect path: {self.init_model}')
def save_trainable_model(self, path):
torch.save({
'hyperparams':{'dim_neck': self.dim_neck, 'dim_emb': self.dim_emb, 'dim_pre': self.dim_pre, 'freq': self.freq},
'G_state_dict': self.G.state_dict(),
'g_optimizer_state_dict': self.g_optimizer.state_dict(),
'G_loss': self.loss
}, path)
def reset_grad(self):
"""Reset the gradient buffers."""
self.g_optimizer.zero_grad()
#=====================================================================================================================================#
def train(self):
# Set data loader.
data_loader = self.vcc_loader
# Print logs in specified order
keys = ['G/loss', 'G/loss_id','G/loss_id_psnt','G/loss_cd']
if self.use_speaker_loss:
keys.append('G/loss_tgt_style')
# Start training.
print('Start training...')
try:
start_time = time.time()
loss = {}
for i in range(self.init_iter, self.init_iter + self.num_iters):
# =================================================================================== #
# 1. Preprocess input data #
# =================================================================================== #
# Fetch data.
try:
x_real, emb_org, emb_target = next(data_iter)
except:
data_iter = iter(data_loader)
x_real, emb_org, emb_target = next(data_iter)
x_real = x_real.to(self.device)
emb_org = emb_org.to(self.device)
emb_target = emb_target.to(self.device)
# =================================================================================== #
# 2. Train the generator #
# =================================================================================== #
self.G = self.G.train()
# Circular mapping loss
x_target_pred, x_target_pred_psnt, code_org = self.G(x_real, emb_org, emb_target)
x_org_reconst, x_org_reconst_psnt, code_target_pred = self.G(x_target_pred.reshape(x_real.shape), emb_target, emb_org)
x_real_reshaped = x_real.reshape((x_real.shape[0],1,x_real.shape[1],x_real.shape[2]))
g_loss_id = F.mse_loss(x_real_reshaped, x_org_reconst)
g_loss_id_psnt = F.mse_loss(x_real_reshaped, x_org_reconst_psnt)
# Code semantic loss.
g_loss_cd = F.l1_loss(code_org, code_target_pred)
# Output style domain loss
g_loss_target_style = torch.Tensor([0]).to(self.device)
if self.use_speaker_loss:
emb_target_pred = self.speaker_embedder(x_target_pred_psnt.reshape(x_real.shape)).to(self.device)
g_loss_target_style = F.l1_loss(emb_target_pred, emb_target)
del x_real, x_real_reshaped, emb_org, x_org_reconst, x_org_reconst_psnt, x_target_pred, x_target_pred_psnt, code_org
# Backward and optimize.
g_loss = g_loss_id + g_loss_id_psnt + g_loss_target_style + self.lambda_cd * g_loss_cd
# Logging.
loss['G/loss'] = g_loss.item() + loss.get('G/loss', 0)
loss['G/loss_id'] = g_loss_id.item() + loss.get('G/loss_id', 0)
loss['G/loss_id_psnt'] = g_loss_id_psnt.item() + loss.get('G/loss_id_psnt', 0)
loss['G/loss_cd'] = g_loss_cd.item() + loss.get('G/loss_cd', 0)
loss['G/loss_tgt_style'] = g_loss_target_style.item() + loss.get('G/loss_tgt_style', 0)
del g_loss_id, g_loss_id_psnt, g_loss_cd, g_loss_target_style
self.loss.append(g_loss.item())
self.reset_grad()
g_loss.backward()
self.g_optimizer.step()
# =================================================================================== #
# 4. Miscellaneous #
# =================================================================================== #
# Print out training information.
if (i+1) % self.log_step == 0:
et = time.time() - start_time
et = str(datetime.timedelta(seconds=et))[:-7]
log = "Elapsed [{}], Iteration [{}/{}]".format(et, i+1, self.num_iters)
for tag in keys:
log += ", {}: {:.4f}".format(tag, loss[tag]/self.log_step)
print(log)
loss = {}
if self.saving_pace!=0 and (i+1) % self.saving_pace == 0:
if not os.path.exists('./trained_models'):
os.mkdir('trained_models')
self.save_trainable_model(f'./trained_models/autovc_{self.saving_prefix}_{i+1}')
except KeyboardInterrupt:
if self.autosave:
self.save_trainable_model('autovc_autosave.ckpt')
raise Exception('KeyboardInterrupt: autosave done.')
raise Exception('KeyboardInterrupt: no autosave.')