-
Notifications
You must be signed in to change notification settings - Fork 118
/
semi_supervised_adversarial_autoencoder.py
executable file
·362 lines (322 loc) · 17.5 KB
/
semi_supervised_adversarial_autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import tensorflow as tf
import numpy as np
import datetime
import os
import argparse
import matplotlib.pyplot as plt
from matplotlib import gridspec
from tensorflow.examples.tutorials.mnist import input_data
# Get the MNIST data
mnist = input_data.read_data_sets('./Data', one_hot=True)
# Parameters
input_dim = 784
n_l1 = 1000
n_l2 = 1000
z_dim = 10
batch_size = 100
n_epochs = 1000
learning_rate = 0.001
beta1 = 0.9
results_path = './Results/Semi_Supervised'
n_labels = 10
n_labeled = 1000
# Placeholders for input data and the targets
x_input = tf.placeholder(dtype=tf.float32, shape=[batch_size, input_dim], name='Input')
x_input_l = tf.placeholder(dtype=tf.float32, shape=[batch_size, input_dim], name='Labeled_Input')
y_input = tf.placeholder(dtype=tf.float32, shape=[batch_size, n_labels], name='Labels')
x_target = tf.placeholder(dtype=tf.float32, shape=[batch_size, input_dim], name='Target')
real_distribution = tf.placeholder(dtype=tf.float32, shape=[batch_size, z_dim], name='Real_distribution')
categorial_distribution = tf.placeholder(dtype=tf.float32, shape=[batch_size, n_labels],
name='Categorical_distribution')
manual_decoder_input = tf.placeholder(dtype=tf.float32, shape=[1, z_dim + n_labels], name='Decoder_input')
def form_results():
"""
Forms folders for each run to store the tensorboard files, saved models and the log files.
:return: three string pointing to tensorboard, saved models and log paths respectively.
"""
folder_name = "/{0}_{1}_{2}_{3}_{4}_{5}_Semi_Supervised". \
format(datetime.datetime.now(), z_dim, learning_rate, batch_size, n_epochs, beta1)
tensorboard_path = results_path + folder_name + '/Tensorboard'
saved_model_path = results_path + folder_name + '/Saved_models/'
log_path = results_path + folder_name + '/log'
if not os.path.exists(results_path + folder_name):
os.mkdir(results_path + folder_name)
os.mkdir(tensorboard_path)
os.mkdir(saved_model_path)
os.mkdir(log_path)
return tensorboard_path, saved_model_path, log_path
def generate_image_grid(sess, op):
"""
Generates a grid of images by passing a set of numbers to the decoder and getting its output.
:param sess: Tensorflow Session required to get the decoder output
:param op: Operation that needs to be called inorder to get the decoder output
:return: None, displays a matplotlib window with all the merged images.
"""
nx, ny = 10, 10
random_inputs = np.random.randn(10, z_dim) * 5.
sample_y = np.identity(10)
plt.subplot()
gs = gridspec.GridSpec(nx, ny, hspace=0.05, wspace=0.05)
i = 0
for r in random_inputs:
for t in sample_y:
r, t = np.reshape(r, (1, z_dim)), np.reshape(t, (1, n_labels))
dec_input = np.concatenate((t, r), 1)
x = sess.run(op, feed_dict={manual_decoder_input: dec_input})
ax = plt.subplot(gs[i])
i += 1
img = np.array(x.tolist()).reshape(28, 28)
ax.imshow(img, cmap='gray')
ax.set_xticks([])
ax.set_yticks([])
ax.set_aspect('auto')
plt.show()
def dense(x, n1, n2, name):
"""
Used to create a dense layer.
:param x: input tensor to the dense layer
:param n1: no. of input neurons
:param n2: no. of output neurons
:param name: name of the entire dense layer.i.e, variable scope name.
:return: tensor with shape [batch_size, n2]
"""
with tf.variable_scope(name, reuse=None):
weights = tf.get_variable("weights", shape=[n1, n2],
initializer=tf.random_normal_initializer(mean=0., stddev=0.01))
bias = tf.get_variable("bias", shape=[n2], initializer=tf.constant_initializer(0.0))
out = tf.add(tf.matmul(x, weights), bias, name='matmul')
return out
# The autoencoder network
def encoder(x, reuse=False, supervised=False):
"""
Encode part of the autoencoder.
:param x: input to the autoencoder
:param reuse: True -> Reuse the encoder variables, False -> Create or search of variables before creating
:param supervised: True -> returns output without passing it through softmax,
False -> returns output after passing it through softmax.
:return: tensor which is the classification output and a hidden latent variable of the autoencoder.
"""
if reuse:
tf.get_variable_scope().reuse_variables()
with tf.name_scope('Encoder'):
e_dense_1 = tf.nn.relu(dense(x, input_dim, n_l1, 'e_dense_1'))
e_dense_2 = tf.nn.relu(dense(e_dense_1, n_l1, n_l2, 'e_dense_2'))
latent_variable = dense(e_dense_2, n_l2, z_dim, 'e_latent_variable')
cat_op = dense(e_dense_2, n_l2, n_labels, 'e_label')
if not supervised:
softmax_label = tf.nn.softmax(logits=cat_op, name='e_softmax_label')
else:
softmax_label = cat_op
return softmax_label, latent_variable
def decoder(x, reuse=False):
"""
Decoder part of the autoencoder.
:param x: input to the decoder
:param reuse: True -> Reuse the decoder variables, False -> Create or search of variables before creating
:return: tensor which should ideally be the input given to the encoder.
"""
if reuse:
tf.get_variable_scope().reuse_variables()
with tf.name_scope('Decoder'):
d_dense_1 = tf.nn.relu(dense(x, z_dim + n_labels, n_l2, 'd_dense_1'))
d_dense_2 = tf.nn.relu(dense(d_dense_1, n_l2, n_l1, 'd_dense_2'))
output = tf.nn.sigmoid(dense(d_dense_2, n_l1, input_dim, 'd_output'))
return output
def discriminator_gauss(x, reuse=False):
"""
Discriminator that is used to match the posterior distribution with a given gaussian distribution.
:param x: tensor of shape [batch_size, z_dim]
:param reuse: True -> Reuse the discriminator variables,
False -> Create or search of variables before creating
:return: tensor of shape [batch_size, 1]
"""
if reuse:
tf.get_variable_scope().reuse_variables()
with tf.name_scope('Discriminator_Gauss'):
dc_den1 = tf.nn.relu(dense(x, z_dim, n_l1, name='dc_g_den1'))
dc_den2 = tf.nn.relu(dense(dc_den1, n_l1, n_l2, name='dc_g_den2'))
output = dense(dc_den2, n_l2, 1, name='dc_g_output')
return output
def discriminator_categorical(x, reuse=False):
"""
Discriminator that is used to match the posterior distribution with a given categorical distribution.
:param x: tensor of shape [batch_size, n_labels]
:param reuse: True -> Reuse the discriminator variables,
False -> Create or search of variables before creating
:return: tensor of shape [batch_size, 1]
"""
if reuse:
tf.get_variable_scope().reuse_variables()
with tf.name_scope('Discriminator_Categorial'):
dc_den1 = tf.nn.relu(dense(x, n_labels, n_l1, name='dc_c_den1'))
dc_den2 = tf.nn.relu(dense(dc_den1, n_l1, n_l2, name='dc_c_den2'))
output = dense(dc_den2, n_l2, 1, name='dc_c_output')
return output
def next_batch(x, y, batch_size):
"""
Used to return a random batch from the given inputs.
:param x: Input images of shape [None, 784]
:param y: Input labels of shape [None, 10]
:param batch_size: integer, batch size of images and labels to return
:return: x -> [batch_size, 784], y-> [batch_size, 10]
"""
index = np.arange(n_labeled)
random_index = np.random.permutation(index)[:batch_size]
return x[random_index], y[random_index]
def train(train_model=True):
"""
Used to train the autoencoder by passing in the necessary inputs.
:param train_model: True -> Train the model, False -> Load the latest trained model and show the image grid.
:return: does not return anything
"""
# Reconstruction Phase
with tf.variable_scope(tf.get_variable_scope()):
encoder_output_label, encoder_output_latent = encoder(x_input)
# Concat class label and the encoder output
decoder_input = tf.concat([encoder_output_label, encoder_output_latent], 1)
decoder_output = decoder(decoder_input)
# Regularization Phase
with tf.variable_scope(tf.get_variable_scope()):
d_g_real = discriminator_gauss(real_distribution)
d_g_fake = discriminator_gauss(encoder_output_latent, reuse=True)
with tf.variable_scope(tf.get_variable_scope()):
d_c_real = discriminator_categorical(categorial_distribution)
d_c_fake = discriminator_categorical(encoder_output_label, reuse=True)
# Semi-Supervised Classification Phase
with tf.variable_scope(tf.get_variable_scope()):
encoder_output_label_, _ = encoder(x_input_l, reuse=True, supervised=True)
# Generate output images
with tf.variable_scope(tf.get_variable_scope()):
decoder_image = decoder(manual_decoder_input, reuse=True)
# Classification accuracy of encoder
correct_pred = tf.equal(tf.argmax(encoder_output_label_, 1), tf.argmax(y_input, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Autoencoder loss
autoencoder_loss = tf.reduce_mean(tf.square(x_target - decoder_output))
# Gaussian Discriminator Loss
dc_g_loss_real = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(d_g_real), logits=d_g_real))
dc_g_loss_fake = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(d_g_fake), logits=d_g_fake))
dc_g_loss = dc_g_loss_fake + dc_g_loss_real
# Categorical Discrimminator Loss
dc_c_loss_real = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(d_c_real), logits=d_c_real))
dc_c_loss_fake = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(d_c_fake), logits=d_c_fake))
dc_c_loss = dc_c_loss_fake + dc_c_loss_real
# Generator loss
generator_g_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(d_g_fake), logits=d_g_fake))
generator_c_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(d_c_fake), logits=d_c_fake))
generator_loss = generator_c_loss + generator_g_loss
# Supervised Encoder Loss
supervised_encoder_loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y_input, logits=encoder_output_label_))
all_variables = tf.trainable_variables()
dc_g_var = [var for var in all_variables if 'dc_g_' in var.name]
dc_c_var = [var for var in all_variables if 'dc_c_' in var.name]
en_var = [var for var in all_variables if 'e_' in var.name]
# Optimizers
autoencoder_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate,
beta1=beta1).minimize(autoencoder_loss)
discriminator_g_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate,
beta1=beta1).minimize(dc_g_loss, var_list=dc_g_var)
discriminator_c_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate,
beta1=beta1).minimize(dc_c_loss, var_list=dc_c_var)
generator_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate,
beta1=beta1).minimize(generator_loss, var_list=en_var)
supervised_encoder_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate,
beta1=beta1).minimize(supervised_encoder_loss,
var_list=en_var)
init = tf.global_variables_initializer()
# Reshape immages to display them
input_images = tf.reshape(x_input, [-1, 28, 28, 1])
generated_images = tf.reshape(decoder_output, [-1, 28, 28, 1])
# Tensorboard visualization
tf.summary.scalar(name='Autoencoder Loss', tensor=autoencoder_loss)
tf.summary.scalar(name='Discriminator gauss Loss', tensor=dc_g_loss)
tf.summary.scalar(name='Discriminator categorical Loss', tensor=dc_c_loss)
tf.summary.scalar(name='Generator Loss', tensor=generator_loss)
tf.summary.scalar(name='Supervised Encoder Loss', tensor=supervised_encoder_loss)
tf.summary.histogram(name='Encoder Gauss Distribution', values=encoder_output_latent)
tf.summary.histogram(name='Real Gauss Distribution', values=real_distribution)
tf.summary.histogram(name='Encoder Categorical Distribution', values=encoder_output_label)
tf.summary.histogram(name='Real Categorical Distribution', values=categorial_distribution)
tf.summary.image(name='Input Images', tensor=input_images, max_outputs=10)
tf.summary.image(name='Generated Images', tensor=generated_images, max_outputs=10)
summary_op = tf.summary.merge_all()
# Saving the model
saver = tf.train.Saver()
step = 0
with tf.Session() as sess:
if train_model:
tensorboard_path, saved_model_path, log_path = form_results()
sess.run(init)
writer = tf.summary.FileWriter(logdir=tensorboard_path, graph=sess.graph)
x_l, y_l = mnist.test.next_batch(n_labeled)
for i in range(n_epochs):
n_batches = int(n_labeled / batch_size)
print("------------------Epoch {}/{}------------------".format(i, n_epochs))
for b in range(1, n_batches + 1):
z_real_dist = np.random.randn(batch_size, z_dim) * 5.
real_cat_dist = np.random.randint(low=0, high=10, size=batch_size)
real_cat_dist = np.eye(n_labels)[real_cat_dist]
batch_x_ul, _ = mnist.train.next_batch(batch_size)
batch_x_l, batch_y_l = next_batch(x_l, y_l, batch_size=batch_size)
sess.run(autoencoder_optimizer, feed_dict={x_input: batch_x_ul, x_target: batch_x_ul})
sess.run(discriminator_g_optimizer,
feed_dict={x_input: batch_x_ul, x_target: batch_x_ul, real_distribution: z_real_dist})
sess.run(discriminator_c_optimizer,
feed_dict={x_input: batch_x_ul, x_target: batch_x_ul,
categorial_distribution: real_cat_dist})
sess.run(generator_optimizer, feed_dict={x_input: batch_x_ul, x_target: batch_x_ul})
sess.run(supervised_encoder_optimizer, feed_dict={x_input_l: batch_x_l, y_input: batch_y_l})
if b % 5 == 0:
a_loss, d_g_loss, d_c_loss, g_loss, s_loss, summary = sess.run(
[autoencoder_loss, dc_g_loss, dc_c_loss, generator_loss, supervised_encoder_loss,
summary_op],
feed_dict={x_input: batch_x_ul, x_target: batch_x_ul,
real_distribution: z_real_dist, y_input: batch_y_l, x_input_l: batch_x_l,
categorial_distribution: real_cat_dist})
writer.add_summary(summary, global_step=step)
print("Epoch: {}, iteration: {}".format(i, b))
print("Autoencoder Loss: {}".format(a_loss))
print("Discriminator Gauss Loss: {}".format(d_g_loss))
print("Discriminator Categorical Loss: {}".format(d_c_loss))
print("Generator Loss: {}".format(g_loss))
print("Supervised Loss: {}\n".format(s_loss))
with open(log_path + '/log.txt', 'a') as log:
log.write("Epoch: {}, iteration: {}\n".format(i, b))
log.write("Autoencoder Loss: {}\n".format(a_loss))
log.write("Discriminator Gauss Loss: {}".format(d_g_loss))
log.write("Discriminator Categorical Loss: {}".format(d_c_loss))
log.write("Generator Loss: {}\n".format(g_loss))
log.write("Supervised Loss: {}".format(s_loss))
step += 1
acc = 0
num_batches = int(mnist.validation.num_examples/batch_size)
for j in range(num_batches):
# Classify unseen validation data instead of test data or train data
batch_x_l, batch_y_l = mnist.validation.next_batch(batch_size=batch_size)
encoder_acc = sess.run(accuracy, feed_dict={x_input_l: batch_x_l, y_input: batch_y_l})
acc += encoder_acc
acc /= num_batches
print("Encoder Classification Accuracy: {}".format(acc))
with open(log_path + '/log.txt', 'a') as log:
log.write("Encoder Classification Accuracy: {}".format(acc))
saver.save(sess, save_path=saved_model_path, global_step=step)
else:
# Get the latest results folder
all_results = os.listdir(results_path)
all_results.sort()
saver.restore(sess, save_path=tf.train.latest_checkpoint(results_path + '/' +
all_results[-1] + '/Saved_models/'))
generate_image_grid(sess, op=decoder_image)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Autoencoder Train Parameter")
parser.add_argument('--train', '-t', type=bool, default=True,
help='Set to True to train a new model, False to load weights and display image grid')
args = parser.parse_args()
train(train_model=args.train)