-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathintersect.py
89 lines (66 loc) · 2.19 KB
/
intersect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import collections
Point = collections.namedtuple("Point", "x y")
# Given three colinear points p, q, r, the function checks if
# point q lies on line segment 'pr'
def onSegment(p, q, r):
if q.x <= max(p.x, r.x) and q.x >= min(p.x, r.x) and \
q.y <= max(p.y, r.y) and q.y >= min(p.y, r.y):
return True
return False
# To find orientation of ordered triplet (p, q, r).
# The function returns following values
# 0 --> p, q and r are colinear
# 1 --> Clockwise
# 2 --> Counterclockwise
def orientation(p, q, r):
# See https:#www.geeksforgeeks.org/orientation-3-ordered-points/
# for details of below formula.
val = (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y)
if val == 0:
return 0 # colinear
return 1 if (val > 0) else 2 # clock or counterclock wise
# The main function that returns true if line segment 'p1q1'
# and 'p2q2' intersect.
def doIntersect(p1, q1, p2, q2):
# Find the four orientations needed for general and
# special cases
o1 = orientation(p1, q1, p2)
o2 = orientation(p1, q1, q2)
o3 = orientation(p2, q2, p1)
o4 = orientation(p2, q2, q1)
# General case
if o1 != o2 and o3 != o4:
return True
# Special Cases
# p1, q1 and p2 are colinear and p2 lies on segment p1q1
if o1 == 0 and onSegment(p1, p2, q1):
return True
# p1, q1 and p2 are colinear and q2 lies on segment p1q1
if o2 == 0 and onSegment(p1, q2, q1):
return True
# p2, q2 and p1 are colinear and p1 lies on segment p2q2
if o3 == 0 and onSegment(p2, p1, q2):
return True
# p2, q2 and q1 are colinear and q1 lies on segment p2q2
if o4 == 0 and onSegment(p2, q1, q2):
return True
return False
# Driver program to test above functions
def main():
p1 = Point(1, 1);
q1 = Point(10, 1)
p2 = Point(1, 2);
q2 = Point(10, 2)
print doIntersect(p1, q1, p2, q2)
p1 = Point(10, 0);
q1 = Point(0, 10)
p2 = Point(0, 0);
q2 = Point(10, 10)
print doIntersect(p1, q1, p2, q2)
p1 = Point(-5, -5);
q1 = Point(0, 0)
p2 = Point(1, 1);
q2 = Point(10, 10)
print doIntersect(p1, q1, p2, q2)
if __name__ == "__main__":
main()