-
Notifications
You must be signed in to change notification settings - Fork 359
/
Copy pathcuSolverRf2cuDSS.hpp
623 lines (534 loc) · 23.9 KB
/
cuSolverRf2cuDSS.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
/*
* Copyright 2024 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#ifndef CUSOLVERSP2CUDSS_HPP
#define CUSOLVERSP2CUDSS_HPP
using ordinal_type = int;
#include "utils.hpp"
void show_usage(const std::string &exec_name) {
std::cout << "usage: " << exec_name << " --solver <cudss;cusolver> --file <filename> --timer --verbose\n";
std::cout << " --solver : select a linear solver; cudss, cusolver\n";
std::cout << " --file : sparse matrix input as a matrix market format\n";
std::cout << " --timer,-t : enable timer to measure solver phases\n";
std::cout << " --verbose,-v : verbose flag\n";
std::cout << " --help,-h : print usage\n";
}
template<typename value_type>
int driver(int argc, char * argv[]) {
using cuda_value_type = typename arith_traits_t<value_type>::cuda_value_type;
using magnitude_type = typename arith_traits_t<value_type>::magnitude_type;
constexpr cudaDataType_t cuda_data_type = arith_traits_t<value_type>::cuda_data_type;
constexpr magnitude_type epsilon = arith_traits_t<value_type>::epsilon;
///
/// Parse command line input
///
int use_cudss(0);
int use_timer(0);
std::string filename("test.mtx");
int verbose(0);
/// parse for solver type, filename and verbose
{
char *opt_val(nullptr);
if (parse_cmdline(argc, argv, "--help") || parse_cmdline(argc, argv, "-h")) {
show_usage(argv[0]);
return 0;
}
if (parse_cmdline(argc, argv, "--solver", &opt_val) && opt_val != nullptr) {
use_cudss = std::string(opt_val) == "cudss";
}
if (parse_cmdline(argc, argv, "--file", &opt_val) && opt_val != nullptr) {
filename = std::string(opt_val);
}
if (parse_cmdline(argc, argv, "--timer") || parse_cmdline(argc, argv, "-t")) {
use_timer = 1;
}
if (parse_cmdline(argc, argv, "--verbose") || parse_cmdline(argc, argv, "-v")) {
verbose = 1;
}
}
std::cout << "-- commandline input\n";
std::cout << " solver: " << (use_cudss ? "cudss, general" : "cusolversp, lu host") << "\n";
std::cout << " filename: " << filename << "\n";
std::cout << " timer: " << (use_timer ? "enabled" : "disabled") << "\n";
std::cout << " verbose: " << verbose << "\n";
try {
///
/// Step 0: Initialize cuda, cusolver, cusparse, cudss, etc.
///
/// CUDA init/finalization
cudaStream_t stream;
CUDA_CHECK(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking));
auto cuda_finalize = [&]() {
CUDA_CHECK(cudaStreamDestroy(stream));
};
/// CUSOLVERSP init/finalization
cusolverSpHandle_t cusolversp;
cusparseMatDescr_t descriptor;
csrluInfoHost_t lu_info;
CUSOLVER_CHECK(cusolverSpCreate(&cusolversp));
CUSOLVER_CHECK(cusolverSpCreateCsrluInfoHost(&lu_info));
CUSPARSE_CHECK(cusparseCreateMatDescr(&descriptor));
auto cusolver_finalize = [&]() {
CUSPARSE_CHECK(cusparseDestroyMatDescr(descriptor));
CUSOLVER_CHECK(cusolverSpDestroyCsrluInfoHost(lu_info));
CUSOLVER_CHECK(cusolverSpDestroy(cusolversp));
};
/// CUDSS init/finalization
cudssHandle_t cudss;
cudssConfig_t config;
cudssData_t data;
CUDSS_CHECK(cudssCreate(&cudss));
CUDSS_CHECK(cudssConfigCreate(&config));
CUDSS_CHECK(cudssDataCreate(cudss, &data));
auto cudss_finalize = [&]() {
CUDSS_CHECK(cudssDataDestroy(cudss, data));
CUDSS_CHECK(cudssConfigDestroy(config));
CUDSS_CHECK(cudssDestroy(cudss));
};
/// Assign stream to cusolversp and cudss
CUSOLVER_CHECK(cusolverSpSetStream(cusolversp, stream));
CUDSS_CHECK(cudssSetStream(cudss, stream));
/// Set matrix descriptor; in this example, we use general matrix type and zero base index
CUSPARSE_CHECK(cusparseSetMatType(descriptor, CUSPARSE_MATRIX_TYPE_GENERAL));
CUSPARSE_CHECK(cusparseSetMatIndexBase(descriptor, CUSPARSE_INDEX_BASE_ZERO));
///
/// Step 1: Set problem Ax = b
///
/// Input csr sparse matrix
ordinal_type m(0), n(0);
std::vector<ordinal_type> h_ap, h_aj;
std::vector<value_type> h_ax;
/// Right hand side and solution vector
std::vector<value_type> h_b, h_x;
/// Read A from matrix market file
read_matrixmarket<value_type>(filename, m, n, h_ap, h_aj, h_ax, verbose);
const ordinal_type nnz = h_ax.size();
std::cout << "-- read matrixmarket file\n";
if (verbose) {
show_csr("A", m, n, h_ap, h_aj, h_ax);
}
/// Randomize solution vector
h_x.resize(m);
randomize_vector(m, h_x);
/// Compute right hand side vector b <- Ax
h_b.resize(m);
compute_b_is_Ax(m, n,
h_ap, h_aj, h_ax,
h_x,
h_b);
if (verbose) {
show_vector("x", m, h_x);
show_vector("b", m, h_b);
}
///
/// Step 2: Fill-reduce ordering
///
/// Permutation and inverse permutation array
std::vector<ordinal_type> h_perm, h_peri;
h_perm.resize(m);
h_peri.resize(m);
/// Explicit reordering for cusolver; cudss does not need this process as it is included into the analysis phase
if (!use_cudss) {
CUSOLVER_CHECK(cusolverSpXcsrmetisndHost(cusolversp, m, nnz, descriptor,
h_ap.data(), h_aj.data(),
NULL, /* default setting. */
h_perm.data()));
for (ordinal_type i=0;i<m;++i) {
h_peri[h_perm[i]] = i;
}
if (verbose) {
std::cout << "-- perm = [ ";
for (auto &p : h_perm)
std::cout << p << " ";
std::cout << "] \n";
std::cout << "-- peri = [ ";
for (auto &p : h_peri)
std::cout << p << " ";
std::cout << "] \n";
}
using ijx_type = coo_t<value_type>;
std::vector<ijx_type> h_mm;
csr_to_coo(m, nnz, h_ap, h_aj, h_ax, h_mm);
for (auto &val : h_mm) {
val._i = h_perm[val._i];
val._j = h_perm[val._j];
}
std::sort(h_mm.begin(), h_mm.end(), std::less<ijx_type>());
coo_to_csr(m, nnz, h_mm, h_ap, h_aj, h_ax);
if (verbose) {
show_csr("P A P^T", m, n, h_ap, h_aj, h_ax);
}
std::vector<value_type> h_tmp = h_b;
std::transform(h_perm.begin(), h_perm.end(), h_b.begin(),
[&h_tmp](int idx) { return h_tmp[idx]; });
if (verbose) {
show_vector("P b", m, h_b);
}
}
CUDA_CHECK(cudaStreamSynchronize(stream));
///
/// Step 3: Transfer host data to device
///
/// allocate on device
ordinal_type *d_ap, *d_aj;
value_type *d_ax, *d_x, *d_b;
CUDA_CHECK(cudaMalloc(reinterpret_cast<void **>(&d_ap), sizeof(ordinal_type)*h_ap.size()));
CUDA_CHECK(cudaMalloc(reinterpret_cast<void **>(&d_aj), sizeof(ordinal_type)*h_aj.size()));
CUDA_CHECK(cudaMalloc(reinterpret_cast<void **>(&d_ax), sizeof(value_type)*h_ax.size()));
CUDA_CHECK(cudaMalloc(reinterpret_cast<void **>(&d_x), sizeof(value_type)*h_x.size()));
CUDA_CHECK(cudaMalloc(reinterpret_cast<void **>(&d_b), sizeof(value_type)*h_b.size()));
CUDA_CHECK(cudaStreamSynchronize(stream));
/// clean-up
auto cuda_free_memory = [&]() {
CUDA_CHECK(cudaFree(reinterpret_cast<void*>(d_ap)));
CUDA_CHECK(cudaFree(reinterpret_cast<void*>(d_aj)));
CUDA_CHECK(cudaFree(reinterpret_cast<void*>(d_ax)));
CUDA_CHECK(cudaFree(reinterpret_cast<void*>(d_x)));
CUDA_CHECK(cudaFree(reinterpret_cast<void*>(d_b)));
};
/// transfer memory to device
CUDA_CHECK(cudaMemcpyAsync(d_ap, h_ap.data(), sizeof(ordinal_type)*h_ap.size(), cudaMemcpyHostToDevice, stream));
CUDA_CHECK(cudaMemcpyAsync(d_aj, h_aj.data(), sizeof(ordinal_type)*h_aj.size(), cudaMemcpyHostToDevice, stream));
CUDA_CHECK(cudaMemcpyAsync(d_ax, h_ax.data(), sizeof(value_type)*h_ax.size(), cudaMemcpyHostToDevice, stream));
CUDA_CHECK(cudaMemcpyAsync(d_b, h_b.data(), sizeof(value_type)*h_b.size(), cudaMemcpyHostToDevice, stream));
/// set zeros on x
CUDA_CHECK(cudaMemsetAsync(d_x, 0, sizeof(value_type)*h_x.size(), stream));
CUDA_CHECK(cudaStreamSynchronize(stream));
///
/// Step 4: Solve the linear system using a direct solver
///
if (use_cudss) {
///
/// Step 4.a.0: Create matrix objects
///
cudssMatrix_t obj_A, obj_x, obj_b;
CUDSS_CHECK(cudssMatrixCreateCsr(&obj_A,
m, n, nnz,
d_ap, nullptr,
d_aj, d_ax,
CUDA_R_32I,
cuda_data_type,
CUDSS_MTYPE_GENERAL,
CUDSS_MVIEW_FULL,
CUDSS_BASE_ZERO));
CUDSS_CHECK(cudssMatrixCreateDn(&obj_x, m, 1, m, d_x, cuda_data_type, CUDSS_LAYOUT_COL_MAJOR));
CUDSS_CHECK(cudssMatrixCreateDn(&obj_b, m, 1, m, d_b, cuda_data_type, CUDSS_LAYOUT_COL_MAJOR));
CUDA_CHECK(cudaStreamSynchronize(stream));
///
/// Step 4.a.1: Analyze
///
{
std::unique_ptr<timer_measurement_t> timer(new timer_measurement_t("cudss:analyze", stream, use_timer));
CUDSS_CHECK(cudssExecute(cudss, CUDSS_PHASE_ANALYSIS, config, data, obj_A, obj_x, obj_b));
}
///
/// Step 4.a.2: Factorize
///
{
std::unique_ptr<timer_measurement_t> timer(new timer_measurement_t("cudss:factorize", stream, use_timer));
CUDSS_CHECK(cudssExecute(cudss, CUDSS_PHASE_FACTORIZATION, config, data, obj_A, obj_x, obj_b));
}
///
/// Step 4.a.3: Solve
///
{
std::unique_ptr<timer_measurement_t> timer(new timer_measurement_t("cudss:solve", stream, use_timer));
CUDSS_CHECK(cudssExecute(cudss, CUDSS_PHASE_SOLVE, config, data, obj_A, obj_x, obj_b));
}
CUDA_CHECK(cudaStreamSynchronize(stream));
///
/// Step 4.a.4: Free objects
///
CUDSS_CHECK(cudssMatrixDestroy(obj_A));
CUDSS_CHECK(cudssMatrixDestroy(obj_b));
CUDSS_CHECK(cudssMatrixDestroy(obj_x));
} else {
///
/// Step 4.b.0: cusolversp does not exploit matrix objects
///
{
///
/// Note that cusolverSpXcsrlsvluHost cannot be used when it is assumed to be used in cusolverRf
/// as the single api interface cleans the internal state
///
std::unique_ptr<timer_measurement_t> timer(new timer_measurement_t("cusolversp::linear-solve", stream, use_timer));
const magnitude_type tol(epsilon*1e3), pivot_threshold(1.0);
///
/// Step 4.b.1: Analyze fills and allocate workspace
///
CUSOLVER_CHECK(cusolverSpXcsrluAnalysisHost(cusolversp,
m, nnz,
descriptor, h_ap.data(), h_aj.data(), lu_info));
size_t internal_data_in_bytes(0), buffer_size_in_bytes(0);
CUSOLVER_CHECK(cusolverSpXcsrluBufferInfoHost(cusolversp,
m, nnz,
descriptor, h_ax.data(), h_ap.data(), h_aj.data(),
lu_info,
&internal_data_in_bytes,
&buffer_size_in_bytes));
std::vector<char> workspace_csrlu(buffer_size_in_bytes);
///
/// Step 4.b.2: Factorize
///
CUSOLVER_CHECK(cusolverSpXcsrluFactorHost(cusolversp,
m, nnz,
descriptor,
reinterpret_cast<const cuda_value_type*>(h_ax.data()),
reinterpret_cast<const ordinal_type*>(h_ap.data()),
reinterpret_cast<const ordinal_type*>(h_aj.data()),
lu_info,
pivot_threshold,
reinterpret_cast<void*>(workspace_csrlu.data())));
///
/// Step 4.b.3: Solve
///
CUSOLVER_CHECK(cusolverSpXcsrluSolveHost(cusolversp, m, h_b.data(), h_x.data(),
lu_info,
reinterpret_cast<void*>(workspace_csrlu.data())));
}
}
///
/// Step 5: Transfer data from device to host
///
if (verbose) {
std::cout << "-- checking solution after lu factorization\n";
}
if (use_cudss) {
CUDA_CHECK(cudaMemcpyAsync(h_x.data(), d_x, sizeof(value_type)*h_x.size(), cudaMemcpyDeviceToHost, stream));
}
CUDA_CHECK(cudaStreamSynchronize(stream));
/// permute solution; x := P^{-1} x
if (!use_cudss) {
std::vector<value_type> h_tmp = h_x;
std::transform(h_peri.begin(), h_peri.end(), h_x.begin(),
[&h_tmp](ordinal_type idx) { return h_tmp[idx]; });
h_x = h_tmp;
}
///
/// Step 6: Compute residual and check the solution
///
{
std::vector<value_type> h_r(h_x.size());
compute_r_is_Ax_minus_b(m, n,
h_ap, h_aj, h_ax,
h_x,
h_b,
h_r);
if (verbose) {
show_vector("r", m, h_r);
}
const double norm_A = compute_norm(h_ax);
const double norm_r = compute_norm(h_r);
std::cout << "-- |A| = " << norm_A << ", "
<< "|Ax-b| = " << norm_r << ", "
<< "|Ax-b|/|A| = " << (norm_r / norm_A) << "\n";
}
///
/// Step 7: Pertub the diagonal of the input matrix for a testing purpose of refactorization
///
{
std::vector<value_type> h_delta_x(m, value_type(0.1));
perturb_diag_A(m, n,
h_ap, h_aj, h_ax,
h_delta_x);
if (verbose) {
show_csr("modified_A", m, n, h_ap, h_aj, h_ax);
}
/// copy to device
CUDA_CHECK(cudaMemcpyAsync(d_ax, h_ax.data(), sizeof(value_type)*h_ax.size(), cudaMemcpyHostToDevice, stream));
CUDA_CHECK(cudaStreamSynchronize(stream));
std::cout << "-- the entries of A are modified\n";
}
///
/// Step 8: Refactorization
///
if (use_cudss) {
///
/// Step 8.a.0: Create matrix objects; these can be reused from previous solve iterations via cudssMatrixSetValues()
///
cudssMatrix_t obj_A, obj_x, obj_b;
CUDSS_CHECK(cudssMatrixCreateCsr(&obj_A,
m, n, nnz,
d_ap, nullptr,
d_aj, d_ax,
CUDA_R_32I,
cuda_data_type,
CUDSS_MTYPE_GENERAL,
CUDSS_MVIEW_FULL,
CUDSS_BASE_ZERO));
CUDSS_CHECK(cudssMatrixCreateDn(&obj_x, m, 1, m, d_x, cuda_data_type, CUDSS_LAYOUT_COL_MAJOR));
CUDSS_CHECK(cudssMatrixCreateDn(&obj_b, m, 1, m, d_b, cuda_data_type, CUDSS_LAYOUT_COL_MAJOR));
CUDA_CHECK(cudaStreamSynchronize(stream));
///
/// Step 8.a.1: Skip the Analyze phase
///
///
/// Step 8.a.2: Factorize
///
{
std::unique_ptr<timer_measurement_t> timer(new timer_measurement_t("cudss:refactorize", stream, use_timer));
CUDSS_CHECK(cudssExecute(cudss, CUDSS_PHASE_REFACTORIZATION, config, data, obj_A, obj_x, obj_b));
}
///
/// Step 8.a.3: Solve
///
{
std::unique_ptr<timer_measurement_t> timer(new timer_measurement_t("cudss:solve", stream, use_timer));
CUDSS_CHECK(cudssExecute(cudss, CUDSS_PHASE_SOLVE, config, data, obj_A, obj_x, obj_b));
}
CUDA_CHECK(cudaStreamSynchronize(stream));
///
/// Step 8.a.4: Free objects
///
CUDSS_CHECK(cudssMatrixDestroy(obj_A));
CUDSS_CHECK(cudssMatrixDestroy(obj_b));
CUDSS_CHECK(cudssMatrixDestroy(obj_x));
} else {
/// Step 8.b.0: Create cusolver rf handle
cusolverRfHandle_t cusolverrf;
/// note that cusolverrf does not have cusolverRfSetStream API and it relies on the default stream
CUSOLVER_CHECK(cusolverRfCreate(&cusolverrf));
auto cusolverrf_finalize = [&]() {
CUSOLVER_CHECK(cusolverRfDestroy(cusolverrf));
};
/// Step 8.b.1: Extract the internal work array
ordinal_type nnz_l(0), nnz_u(0);
CUSOLVER_CHECK(cusolverSpXcsrluNnzHost(cusolversp, &nnz_l, &nnz_u,lu_info));
/// lower and upper part of factors in a csr matrix form
std::vector<ordinal_type> h_lp(m+1), h_up(m+1);
std::vector<ordinal_type> h_lj(nnz_l), h_uj(nnz_u);
std::vector<value_type> h_lx(nnz_l), h_ux(nnz_u);
std::vector<ordinal_type> h_p(m), h_q(m); /// permutation vectors
CUSOLVER_CHECK(cusolverSpXcsrluExtractHost(cusolversp,
h_p.data(), h_q.data(),
descriptor, h_lx.data(), h_lp.data(), h_lj.data(),
descriptor, h_ux.data(), h_up.data(), h_uj.data(),
lu_info, nullptr));
/// Step 8.b.2: Set matrix
CUSOLVER_CHECK(cusolverRfSetMatrixFormat(cusolverrf,
CUSOLVERRF_MATRIX_FORMAT_CSR,
CUSOLVERRF_UNIT_DIAGONAL_ASSUMED_L));
CUSOLVER_CHECK(cusolverRfSetupHost(m,
nnz, h_ap.data(), h_aj.data(), h_ax.data(),
nnz_l, h_lp.data(), h_lj.data(), h_lx.data(),
nnz_u, h_up.data(), h_uj.data(), h_ux.data(),
h_p.data(), h_q.data(),
cusolverrf));
/// Step 8.b.3: Analyze
CUSOLVER_CHECK(cusolverRfAnalyze(cusolverrf));
/// Step 8.b.4: Reset values to device
ordinal_type *d_p, *d_q;
CUDA_CHECK(cudaMalloc(reinterpret_cast<void **>(&d_p), sizeof(ordinal_type)*m));
CUDA_CHECK(cudaMalloc(reinterpret_cast<void **>(&d_q), sizeof(ordinal_type)*m));
/// note that it is assumed that the same pivot sequence can factorize the matrix without having a null pivot
CUDA_CHECK(cudaMemcpy(d_p, h_p.data(), sizeof(ordinal_type)*m, cudaMemcpyHostToDevice));
CUDA_CHECK(cudaMemcpy(d_q, h_q.data(), sizeof(ordinal_type)*m, cudaMemcpyHostToDevice));
CUSOLVER_CHECK(cusolverRfResetValues(m, nnz, d_ap, d_aj, d_ax, d_q, d_q, cusolverrf));
/// Step 8.b.5: Refactorize
CUSOLVER_CHECK(cusolverRfRefactor(cusolverrf));
/// allocate temporary rhs vector and set x := b, x will be overwritten by a solution vector
const ordinal_type nrhs = 1;
value_type *d_tmp;
CUDA_CHECK(cudaMalloc(reinterpret_cast<void **>(&d_tmp), sizeof(value_type)*m));
CUDA_CHECK(cudaMemcpy(d_x, d_b, sizeof(value_type)*m, cudaMemcpyDeviceToDevice));
CUSOLVER_CHECK(cusolverRfSolve(cusolverrf, d_p, d_q, nrhs, d_tmp, m, d_x, m));
CUDA_CHECK(cudaDeviceSynchronize());
CUDA_CHECK(cudaFree(reinterpret_cast<void*>(d_tmp)));
CUDA_CHECK(cudaFree(reinterpret_cast<void*>(d_p)));
CUDA_CHECK(cudaFree(reinterpret_cast<void*>(d_q)));
cusolverrf_finalize();
}
std::cout << "-- A is refactorized\n";
///
/// Step 9: Transfer data from device to host
///
if (verbose) {
std::cout << "-- checking solution after refactorization\n";
}
CUDA_CHECK(cudaDeviceSynchronize());
CUDA_CHECK(cudaMemcpyAsync(h_x.data(), d_x, sizeof(value_type)*h_x.size(), cudaMemcpyDeviceToHost, stream));
CUDA_CHECK(cudaStreamSynchronize(stream));
/// permute solution; x := P^{-1} x
if (!use_cudss) {
std::vector<value_type> h_tmp = h_x;
std::transform(h_peri.begin(), h_peri.end(), h_x.begin(),
[&h_tmp](ordinal_type idx) { return h_tmp[idx]; });
h_x = h_tmp;
}
///
/// Step 10: Compute residual and check the solution
///
{
std::vector<value_type> h_r(h_x.size());
compute_r_is_Ax_minus_b(m, n,
h_ap, h_aj, h_ax,
h_x,
h_b,
h_r);
if (verbose) {
show_vector("r", m, h_r);
}
const double norm_A = compute_norm(h_ax);
const double norm_r = compute_norm(h_r);
std::cout << "-- |A| = " << norm_A << ", "
<< "|Ax-b| = " << norm_r << ", "
<< "|Ax-b|/|A| = " << (norm_r / norm_A) << "\n";
}
///
/// Step 7: Finalize cuda instances and memory
///
cuda_free_memory();
cusolver_finalize();
cudss_finalize();
cuda_finalize();
} catch (std::exception &e) {
std::cerr << "Error: exception is caught: \n" << e.what() << "\n";
}
return 0;
}
#endif