- Method paper description is updated.
- Bayesian Causal Forest (
bcf
) ITE estimator is not supported.
- Fixed failing unit tests on specific operating systems.
- Replace BATE with ATE in CATE Linear Decomposition.
- Update
plot()
function (remove ATE, old BATE, and explicit AATEs).
- Code of Conduct.
- Causal Tree benchmark in functional tests.
- Rank-Deficient Rule Matrix Issue (redundant rules).
- Intervention Variables Filtering (ordered filtering).
offset
method-parameter -> hyper-parameterestimate_ite_poisson
function ->estimate_ite_tpoisson
max_dacay
hyper-parameter ->t_decay
.interpret_select_rules
function ->interpret_rules
.generate_causal_rules
function ->discover_rules
.discover_causal_rules
function ->select_rules
.offset_name
method parameter ->offset
.- Hyper and method parameters are no more required arguments for
cre
. cre
object: added parameters and ite estimation.
- Synthetic data set with 1 or 3 rules (
generate_cre_dataset
). - S-Learner (
slearner
) method for ITE estimation. - T-Learner (
tlearner
) method for ITE estimation. - X-Learner (
xlearner
) method for ITE estimation. - Rules Selection description in
summary.cre
. verbose
parameter insummary.cre
.ite
, additionalcre
input parameter to use personalized ite estimations.- Default values for hyper parameters.
- Default values for method parameters.
- Simulation experiments for estimation (
estimation.R
). - Simulation experiments for discovery (
discovery.R
). extract_effect_modifiers
function (utility for performance evaluation).evaluate
function for discovery evaluation.confounding
parameter ingenerate_cre_dataset
to set confounding type.ite_pred
andmodel
in CRE results.binary_covariates
parameter ingenerate_cre_dataset
to set covariates domain.
include_ps_inf
method-parameter.include_ps_dis
method-parameter.oreg
method for ITE estimation.ipw
method for ITE estimation.sipw
method for ITE estimation.- ITE standard deviation estimation.
type_decay
hyper-parameter.- Keep only
linreg
for CATE estimation (removecate_method
andcate_SL_library
parameters). method_params
andhyper_params
additional parameters insummary.cre
.- ite standardization for Rules Generation.
random_state
parameter.include_offset
method parameter.
- Rules Generation Issue (set rules length and fix bootstrapping).
binary
parameter ingenerate_cre_dataset
->binary_outcome
.filter_cate
hyper-parameter ->t_pvalue
.t_anom
hyper-parameter ->t_ext
.effect_modifier
hyper-parameter ->intervention_vars
.lasso_rules_filter
function ->discover_causal_rules
.split_data
function ->honest_splitting
.prune_rules
function -> ``filter_irrelevant_rules`.discard_correlated_rules
function ->filter_correlated_rules
.discard_anomalous_rules
function ->filter_extreme_rules
.
- Weighted LASSO for Causal Rules Discovery (by
penalty_rl
hyper-parameter).
- Update examples and tests for all functions.
q
hyper-parameter ->cutoff
.pfer_val
hyper-parameter ->pfer
.select_causal_rules
function ->lasso_rules_filter
.t
hyper-parameter ->t_anom
.- Separate standardization, and remove filtering from
generate_rules_matrix
function. summary.cre
function to describe results.min_nodes
hyper-parameter ->node_size
(randomForest
convention).cre
returns an S3 object.
- Examples and tests for all functions.
prune_rules
function to discard un-predictive rules.discard_anomalous_rules
function to discard anomalous rules (seet_corr
hyper-parameter.).discard_correlated_rules
function to discard correlated rules (seet_anom
hyper-parameter).effect_modifiers
parameter ingenerate_rules
function for covariates filtering.generate_causal_rules
function.- Helper function with
SuperLearner
package for propensity score estimation inestimate_ite_xyz
. - Five methods for CATE estimation (
poisson
,DRLearner
,bart-baggr
,cf-means
,linreg
) inestimate_cate
function. - (
ps_method_dis
,ps_method_inf
,or_method_dis
,or_method_inf
,cate_SL_library
) method-parameters to complementSuperLearner
package. cate_method
method-parameter to select CATE estimation method.filter_cate
method-parameter for estimation filtering.p
parameter (ingenerate_cre_dataset
function) to set the number of covariates.replace
parameter (ingenerate_rules
function) to allow bootstrapping.cre.print
generic function to printcre
S3 object results.cre.summary
generic functions to summarizecre
S3 object Results.check_input
function to isolate input checks.estimate_ite_aipw
function for augmented inverse propensity weighting.plot.cre
generic function to plotcre
S3 object results.test-cre_functional.R
to test the functionality of the package.stability_selection
function for causal rules selection.
estimate_ite_blp
function.take1()
function.
- Undesired 'All' Decision Rule Issue.
- No Causal Rule Selected Issue.
estimate_cate
include two methods for estimating the CATE values.cre
added initial checks for binary outcome and whether to include the propensity score in the ITE estimation.estimate_ite_xyz
conduct propensity score estimation using helper function.
- Example for
generate_cre_dataset
. set_logger
andget_logger
.check_input_data
function.generate_cre_dataset
function to generate synthetic data for testing the package.test-generate_cre_dataset
function test.estimate_ps
function to estimate the propensity score.estimate_ite_xbart
function to generate ITE estimates using accelerated BART.estimate_ite_xbcf
function to generate ITE estimates using accelerated BCF.analyze_sensitivity
function to conduct sensitivity analysis for unmeasured confounding.cre
function to perform the entire Causal Rule Ensemble method.estimate_cate
function to generate CATE estimates from the ITE estimates and select rules.estimate_ite
function to generate ITE estimates using the user-specified method (calls the otherestimate_ite_xyz
functions).estimate_ite_bart
function to generate ITE estimates using BART.estimate_ite_bcf
function to generate ITE estimates using Bayesian Causal Forests.estimate_ite_cf
function to generate ITE estimates using Causal Forests.estimate_ite_ipw
function to generate ITE estimates using IPW.estimate_ite_or
function to generate ITE estimates using Outcome Regression.estimate_ite_sipw
function to generate ITE estimates using SIPW.extract_rules
function to extract a list of causal rules from randomForest and GBM models.generate_rules
function to generate causal rule models using randomForest and GBM methods.generate_rules_matrix
function to convert a list of causal rules into a matrix.select_causal_rules
function to apply penalized regression to causal rules. to select only the most important ones.split_data
function to split input data into discovery and inference subsamples.take1
function to create a subsample of indices.
seed
argument ingenerate_cre_datase
function.