forked from J3rome/CLEAR-AQA-Dataset-Generator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproduce_scenes_audio.py
488 lines (391 loc) · 21.6 KB
/
produce_scenes_audio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
# CLEAR Dataset
# >> Scene audio produce
#
# Author : Jerome Abdelnour
# Year : 2018-2019
# Affiliations: Universite de Sherbrooke - Electrical and Computer Engineering faculty
# KTH Stockholm Royal Institute of Technology
# IGLU - CHIST-ERA
import sys, os, argparse, random
from multiprocessing import Process, Queue
from shutil import rmtree as rm_dir
from datetime import datetime
import time
import gc
import json
from pydub import AudioSegment
from pydub.utils import get_array_type
import numpy as np
import matplotlib
# Matplotlib options to reduce memory usage
matplotlib.interactive(False)
matplotlib.use('agg')
import matplotlib.pyplot as plt
from utils.audio_processing import add_reverberation, generate_random_noise
from utils.misc import init_random_seed, pydub_audiosegment_to_float_array, float_array_to_pydub_audiosegment
from utils.misc import save_arguments
"""
Arguments definition
"""
parser = argparse.ArgumentParser(fromfile_prefix_chars='@')
# Inputs
parser.add_argument('--elementary_sounds_folder', default='../elementary_sounds', type=str,
help='Folder containing all the elementary sounds and the JSON listing them')
parser.add_argument('--elementary_sounds_definition_filename', default='elementary_sounds.json', type=str,
help='Filename of the JSON file listing the attributes of the elementary sounds')
# Options
parser.add_argument('--with_background_noise', action='store_true',
help='Use this setting to include a background noise in the scenes')
parser.add_argument('--background_noise_gain_range', default="-100,-20", type=str,
help='Range for the gain applied to the background noise. '
'Should be written as 0,100 for a range from 0 to 100')
parser.add_argument('--no_background_noise', action='store_true',
help='Override the --with_background_noise setting. If this is set, there will be no background noise.')
parser.add_argument('--with_reverb', action='store_true',
help='Use this setting to include ramdom reverberations in the scenes')
parser.add_argument('--reverb_room_scale_range', default="0,100", type=str,
help='Range for the reverberation parameter. Should be written as 0,100 for a range from 0 to 100')
parser.add_argument('--reverb_delay_range', default="0,500", type=str,
help='Range for the reverberation parameter. Should be written as 0,100 for a range from 0 to 100')
parser.add_argument('--no_reverb', action='store_true',
help='Override the --with_reverb setting. If this is set, there will be no reverberation.')
parser.add_argument('--no_audio_files', action='store_true',
help='If set, audio file won\'t be produced. '
'The --produce_spectrograms switch will also be activated')
parser.add_argument('--produce_spectrograms', action='store_true',
help='If set, produce the spectrograms for each scenes')
parser.add_argument('--spectrogram_freq_resolution', default=21, type=int,
help='Resolution of the Y axis in Freq/px ')
parser.add_argument('--spectrogram_time_resolution', default=3, type=int,
help='Resolution of the X axis in ms/px')
parser.add_argument('--spectrogram_window_length', default=1024, type=int,
help='Number of samples used in the FFT window')
parser.add_argument('--spectrogram_window_overlap', default=512, type=int,
help='Number of samples that are overlapped in the FFT window')
# Outputs
parser.add_argument('--output_folder', default='../output', type=str,
help='Folder where the audio and images will be saved')
parser.add_argument('--set_type', default='train', type=str,
help="Specify the set type (train/val/test)")
parser.add_argument('--clear_existing_files', action='store_true',
help='If set, will delete all files in the output folder before starting the generation.')
parser.add_argument('--output_filename_prefix', default='CLEAR', type=str,
help='Prefix used for produced files')
parser.add_argument('--output_frame_rate', default=22050, type=int,
help='Frame rate of the outputed audio file')
parser.add_argument('--do_resample', action='store_true',
help='If set, will use the --output_frame_rate to resample the audio')
parser.add_argument('--output_version_nb', default='0.1', type=str,
help='Version number that will be appended to the produced file')
parser.add_argument('--produce_specific_scenes', default="", type=str,
help='Range for the reverberation parameter. Should be written as 0,100 for a range from 0 to 100')
# Misc
parser.add_argument('--random_nb_generator_seed', default=None, type=int,
help='Set the random number generator seed to reproduce results')
parser.add_argument('--nb_process', default=4, type=int,
help='Number of process allocated for the production')
"""
Produce audio recording from scene JSON definition
Can also produce spectrograms of the scene if the correct option is provided
- Load scenes JSON definition from file
- Calculate random silence duration (Silence between sounds)
- Concatenate Elementary Sounds (In the order defined by the scene JSON)
- Generate random white noise and overlay on the scene
- Apply reverberation effect
- Write audio scene to file (Either as a WAV file, a spectrogram/PNG or both
The production is distributed across {nb_process} processes
"""
class AudioSceneProducer:
def __init__(self,
outputFolder,
version_nb,
spectrogramSettings,
withBackgroundNoise,
backgroundNoiseGainSetting,
withReverb,
reverbSettings,
produce_audio_files,
produce_spectrograms,
clear_existing_files,
elementarySoundsJsonFilename,
elementarySoundFolderPath,
setType,
outputPrefix,
outputFrameRate,
randomSeed):
# Paths
self.outputFolder = outputFolder
self.elementarySoundFolderPath = elementarySoundFolderPath
self.version_nb = version_nb
self.outputPrefix = outputPrefix
self.setType = setType
self.produce_audio_files = produce_audio_files
self.produce_spectrograms = produce_spectrograms
experiment_output_folder = os.path.join(self.outputFolder, self.version_nb)
# Loading elementary sounds definition from json definition file
with open(os.path.join(self.elementarySoundFolderPath, elementarySoundsJsonFilename)) as file:
self.elementarySounds = json.load(file)
# Loading scenes definition
sceneFilename = '%s_%s_scenes.json' % (self.outputPrefix, self.setType)
sceneFilepath = os.path.join(experiment_output_folder, 'scenes', sceneFilename)
with open(sceneFilepath) as scenesJson:
self.scenes = json.load(scenesJson)['scenes']
self.spectrogramSettings = spectrogramSettings
self.withBackgroundNoise = withBackgroundNoise
self.backgroundNoiseGainSetting = backgroundNoiseGainSetting
self.withReverb = withReverb
self.reverbSettings = reverbSettings
self.outputFrameRate = outputFrameRate
root_images_output_folder = os.path.join(experiment_output_folder, 'images')
root_audio_output_folder = os.path.join(experiment_output_folder, 'audio')
if not os.path.isdir(experiment_output_folder):
# This is impossible, if the experiment folder doesn't exist we won't be able to retrieve the scenes
os.mkdir(experiment_output_folder)
self.images_output_folder = os.path.join(root_images_output_folder, self.setType)
self.audio_output_folder = os.path.join(root_audio_output_folder, self.setType)
if self.produce_audio_files:
if not os.path.isdir(root_audio_output_folder):
os.mkdir(root_audio_output_folder)
os.mkdir(self.audio_output_folder)
else:
if not os.path.isdir(self.audio_output_folder):
os.mkdir(self.audio_output_folder)
elif clear_existing_files:
rm_dir(self.audio_output_folder)
os.mkdir(self.audio_output_folder)
if self.produce_spectrograms:
if not os.path.isdir(root_images_output_folder):
os.mkdir(root_images_output_folder)
os.mkdir(self.images_output_folder)
else:
if not os.path.isdir(self.images_output_folder):
os.mkdir(self.images_output_folder)
elif clear_existing_files:
rm_dir(self.images_output_folder)
os.mkdir(self.images_output_folder)
self.currentSceneIndex = -1 # We start at -1 since nextScene() will increment idx at the start of the fct
self.nbOfLoadedScenes = len(self.scenes)
if self.nbOfLoadedScenes == 0:
print("[ERROR] Must have at least 1 scene in '" + sceneFilepath + "'", file=sys.stderr)
exit(1)
self.show_status_every = int(self.nbOfLoadedScenes / 10)
self.show_status_every = self.show_status_every if self.show_status_every > 0 else 1
self.loadedSounds = []
self.randomSeed = randomSeed
def loadAllElementarySounds(self):
print("Loading elementary sounds")
for sound in self.elementarySounds:
# Creating the audio segment (Suppose WAV format)
soundFilepath = os.path.join(self.elementarySoundFolderPath, sound['filename'])
soundAudioSegment = AudioSegment.from_wav(soundFilepath)
if self.outputFrameRate and soundAudioSegment.frame_rate != self.outputFrameRate:
soundAudioSegment = soundAudioSegment.set_frame_rate(self.outputFrameRate)
self.loadedSounds.append({
'name': sound['filename'],
'audioSegment': soundAudioSegment
})
print("Done loading elementary sounds")
def _getLoadedAudioSegmentByName(self, name):
filterResult = list(filter(lambda sound: sound['name'] == name, self.loadedSounds))
if len(filterResult) == 1:
return filterResult[0]['audioSegment']
else:
print('[ERROR] Could not retrieve loaded audio segment \'' + name + '\' from memory.')
exit(1)
def produceSceneProcess(self, queue, emptyQueueTimeout=5):
# Wait 1 sec for the main thread to fillup the queue
time.sleep(1)
emptyQueueCount = 0
while emptyQueueCount < emptyQueueTimeout:
if not queue.empty():
# Reset empty queue count
emptyQueueCount = 0
# Retrieve Id and produce scene
idToProcess = queue.get()
self.produceScene(idToProcess)
else:
emptyQueueCount += 1
time.sleep(random.random())
return
def produceScene(self, sceneId):
# Since this function is run by different process, we must set the same seed for every process
init_random_seed(self.randomSeed)
if sceneId < self.nbOfLoadedScenes:
scene = self.scenes[sceneId]
if sceneId % self.show_status_every == 0:
print('Producing scene ' + str(sceneId), flush=True)
sceneAudioSegment = self.assembleAudioScene(scene)
if self.outputFrameRate and sceneAudioSegment.frame_rate != self.outputFrameRate:
sceneAudioSegment = sceneAudioSegment.set_frame_rate(self.outputFrameRate)
if self.produce_audio_files:
audioFilename = '%s_%s_%06d.flac' % (self.outputPrefix, self.setType, sceneId)
sceneAudioSegment.export(os.path.join(self.audio_output_folder, audioFilename), format='flac')
if self.produce_spectrograms:
spectrogram = AudioSceneProducer.createSpectrogram(sceneAudioSegment,
self.spectrogramSettings['freqResolution'],
self.spectrogramSettings['timeResolution'],
self.spectrogramSettings['window_length'],
self.spectrogramSettings['window_overlap'])
imageFilename = '%s_%s_%06d.png' % (self.outputPrefix, self.setType, sceneId)
spectrogram.savefig(os.path.join(self.images_output_folder, imageFilename), dpi=100)
AudioSceneProducer.clearSpectrogram(spectrogram)
else:
print("[ERROR] The scene specified by id '%d' couln't be found" % sceneId)
def assembleAudioScene(self, scene):
sceneAudioSegment = AudioSegment.empty()
sceneAudioSegment += AudioSegment.silent(duration=scene['silence_before'])
for sound in scene['objects']:
newAudioSegment = self._getLoadedAudioSegmentByName(sound['filename'])
sceneAudioSegment += newAudioSegment
# Insert a silence padding after the sound
sceneAudioSegment += AudioSegment.silent(duration=sound['silence_after'])
if self.withBackgroundNoise:
gain = random.randrange(self.backgroundNoiseGainSetting['min'], self.backgroundNoiseGainSetting['max'])
sceneAudioSegment = AudioSceneProducer.overlayBackgroundNoise(sceneAudioSegment, gain)
if self.withReverb:
roomScale = random.randrange(self.reverbSettings['roomScale']['min'],
self.reverbSettings['roomScale']['max'])
delay = random.randrange(self.reverbSettings['delay']['min'], self.reverbSettings['delay']['max'])
sceneAudioSegment = AudioSceneProducer.applyReverberation(sceneAudioSegment, roomScale, delay)
# Make sure the everything is in Mono (If stereo, will convert to mono)
sceneAudioSegment.set_channels(1)
return sceneAudioSegment
@staticmethod
def applyReverberation(audioSegment, roomScale, delay):
floatArray = pydub_audiosegment_to_float_array(audioSegment, audioSegment.frame_rate, audioSegment.sample_width)
floatArrayWithReverb = add_reverberation(floatArray, room_scale=roomScale, pre_delay=delay)
return float_array_to_pydub_audiosegment(floatArrayWithReverb, audioSegment.frame_rate,
audioSegment.sample_width)
@staticmethod
def overlayBackgroundNoise(sceneAudioSegment, noiseGain):
backgroundNoise = generate_random_noise(sceneAudioSegment.duration_seconds * 1000,
noiseGain,
sceneAudioSegment.frame_width,
sceneAudioSegment.frame_rate)
sceneAudioSegment = backgroundNoise.overlay(sceneAudioSegment)
return sceneAudioSegment
@staticmethod
def createSpectrogram(sceneAudioSegment, freqResolution, timeResolution, windowLength, windowOverlap):
highestFreq = sceneAudioSegment.frame_rate/2
height = highestFreq // freqResolution
width = sceneAudioSegment.duration_seconds * 1000 // timeResolution
# Set figure settings to remove all axis
spectrogram = plt.figure(frameon=False)
spectrogram.set_size_inches(width/100, height/100)
ax = plt.Axes(spectrogram, [0., 0., 1., 1.])
ax.set_axis_off()
spectrogram.add_axes(ax)
# Generate the spectrogram
# See https://matplotlib.org/api/_as_gen/matplotlib.pyplot.specgram.html?highlight=matplotlib%20pyplot%20specgram#matplotlib.pyplot.specgram
Pxx, freqs, bins, im = ax.specgram(x=np.frombuffer(sceneAudioSegment._data,
dtype=get_array_type(8*sceneAudioSegment.frame_width)),
Fs=sceneAudioSegment.frame_rate,
window=matplotlib.mlab.window_hanning,
NFFT=windowLength,
noverlap=windowOverlap,
scale='dB')
return spectrogram
@staticmethod
def clearSpectrogram(spectrogram):
# Close and Clear the figure
plt.close(spectrogram)
spectrogram.clear()
gc.collect()
def mainPool():
args = parser.parse_args()
# Setting & Saving the random seed
assert args.random_nb_generator_seed is not None, "The seed must be specified in the arguments."
init_random_seed(args.random_nb_generator_seed)
# If not producing audio, we will produce spectrograms
if args.no_audio_files and not args.produce_spectrograms:
args.produce_spectrograms = True
# Preparing settings
reverbRoomScaleRange = args.reverb_room_scale_range.split(',')
reverbDelayRange = args.reverb_delay_range.split(',')
reverbSettings = {
'roomScale': {
'min': int(reverbRoomScaleRange[0]),
'max': int(reverbRoomScaleRange[1])
},
'delay': {
'min': int(reverbDelayRange[0]),
'max': int(reverbDelayRange[1])
}
}
backgroundNoiseGainRange = args.background_noise_gain_range.split(',')
backgroundNoiseGainSetting = {
'min': int(backgroundNoiseGainRange[0]),
'max': int(backgroundNoiseGainRange[1])
}
args.with_background_noise = args.with_background_noise and not args.no_background_noise
args.with_reverb = args.with_reverb and not args.no_reverb
# Creating the producer
producer = AudioSceneProducer(outputFolder=args.output_folder,
version_nb=args.output_version_nb,
elementarySoundsJsonFilename=args.elementary_sounds_definition_filename,
elementarySoundFolderPath=args.elementary_sounds_folder,
setType=args.set_type,
randomSeed=args.random_nb_generator_seed,
outputFrameRate=args.output_frame_rate if args.do_resample else None ,
outputPrefix=args.output_filename_prefix,
produce_audio_files=not args.no_audio_files,
produce_spectrograms=args.produce_spectrograms,
clear_existing_files=args.clear_existing_files,
withBackgroundNoise=args.with_background_noise,
backgroundNoiseGainSetting=backgroundNoiseGainSetting,
withReverb=args.with_reverb,
reverbSettings=reverbSettings,
spectrogramSettings={
'freqResolution': args.spectrogram_freq_resolution,
'timeResolution': args.spectrogram_time_resolution,
'window_length': args.spectrogram_window_length,
'window_overlap': args.spectrogram_window_overlap,
})
# Save arguments
save_arguments(args, f"{args.output_folder}/{args.output_version_nb}/arguments",
f"produce_scenes_audio_{args.set_type}.args")
# Setting ids of scenes to produce
if args.produce_specific_scenes == '':
idList = range(producer.nbOfLoadedScenes)
nb_generated = producer.nbOfLoadedScenes
else:
bounds = [int(x) for x in args.produce_specific_scenes.split(",")]
if len(bounds) != 2 or bounds[0] > bounds[1]:
print("Invalid scenes interval. Must be specified as X,Y where X is the low bound and Y the high bound.",
file=sys.stderr)
exit(1)
bounds[1] = bounds[1] if bounds[1] < producer.nbOfLoadedScenes else producer.nbOfLoadedScenes
idList = range(bounds[0], bounds[1])
nb_generated = bounds[1] - bounds[0]
idList = iter(idList)
# Load and preprocess all elementary sounds into memory
producer.loadAllElementarySounds()
startTime = datetime.now()
id_queue = Queue(maxsize=1000)
worker_processes = [Process(target=producer.produceSceneProcess, args=(id_queue,)) for i in range(args.nb_process)]
for p in worker_processes:
p.start()
done = False
while not done:
if not id_queue.full():
try:
id_queue.put(next(idList))
except StopIteration:
# Reached the end of the iterator
done = True
else:
# Producing the scenes take quite some time.
# We wait for 30 seconds in order to reduce context switch between main process and worker processes
time.sleep(30)
print("Done filling worker processes queue")
# Wait for all processes to finish
for p in worker_processes:
p.join()
print("Job Done !")
print(f"Took {str(datetime.now() - startTime)}")
if args.produce_spectrograms:
print(">>> Produced %d spectrograms." % nb_generated)
if not args.no_audio_files:
print(">>> Produced %d audio files." % nb_generated)
if __name__ == '__main__':
mainPool()