forked from confluentinc/kafka-streams-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
WikipediaFeedAvroExample.java
156 lines (139 loc) · 8.04 KB
/
WikipediaFeedAvroExample.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
/*
* Copyright Confluent Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package io.confluent.examples.streams;
import io.confluent.examples.streams.avro.WikiFeed;
import io.confluent.examples.streams.utils.MonitoringInterceptorUtils;
import io.confluent.kafka.serializers.AbstractKafkaSchemaSerDeConfig;
import io.confluent.kafka.streams.serdes.avro.SpecificAvroSerde;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.common.serialization.Serde;
import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.streams.KafkaStreams;
import org.apache.kafka.streams.KeyValue;
import org.apache.kafka.streams.StreamsBuilder;
import org.apache.kafka.streams.StreamsConfig;
import org.apache.kafka.streams.kstream.KStream;
import org.apache.kafka.streams.kstream.KTable;
import org.apache.kafka.streams.kstream.KeyValueMapper;
import org.apache.kafka.streams.kstream.Produced;
import java.util.Properties;
/**
* Computes, for every minute the number of new user feeds from the Wikipedia feed irc stream. Same
* as {@link WikipediaFeedAvroLambdaExample} but does not use lambda expressions and thus works on
* Java 7+. <p> Note: The specific Avro binding is used for serialization/deserialization, where the
* {@code WikiFeed} class is auto-generated from its Avro schema by the maven avro plugin. See
* {@code wikifeed.avsc} under {@code src/main/resources/avro/io/confluent/examples/streams/}. <p>
* <br> HOW TO RUN THIS EXAMPLE <p> 1) Start Zookeeper, Kafka, and Confluent Schema Registry. Please
* refer to <a href='http://docs.confluent.io/current/quickstart.html#quickstart'>QuickStart</a>.
* <p> 2) Create the input/intermediate/output topics used by this example.
* <pre>
* {@code
* $ bin/kafka-topics --create --topic WikipediaFeed \
* --zookeeper localhost:2181 --partitions 1 --replication-factor 1
* $ bin/kafka-topics --create --topic WikipediaStats \
* --zookeeper localhost:2181 --partitions 1 --replication-factor 1
* }</pre>
* Note: The above commands are for the Confluent Platform. For Apache Kafka it should be {@code bin/kafka-topics.sh ...}.
* <p>
* 3) Start this example application either in your IDE or on the command line.
* <p>
* If via the command line please refer to <a href='https://github.com/confluentinc/kafka-streams-examples#packaging-and-running'>Packaging</a>.
* Once packaged you can then run:
* <pre>
* {@code
* $ java -cp target/kafka-streams-examples-7.0.0-standalone.jar io.confluent.examples.streams.WikipediaFeedAvroExample
* }
* </pre>
* 4) Write some input data to the source topics (e.g. via {@link WikipediaFeedAvroExampleDriver}).
* The already running example application (step 3) will automatically process this input data and
* write the results to the output topic. The {@link WikipediaFeedAvroExampleDriver} will print the
* results from the output topic
* <pre>
* {@code
* # Here: Write input data using the example driver. Once the driver has stopped generating data,
* # you can terminate it via Ctrl-C.
* $ java -cp target/kafka-streams-examples-7.0.0-standalone.jar io.confluent.examples.streams.WikipediaFeedAvroExampleDriver
* }
* </pre>
*/
public class WikipediaFeedAvroExample {
static final String WIKIPEDIA_FEED = "WikipediaFeed";
static final String WIKIPEDIA_STATS = "WikipediaStats";
public static void main(final String[] args) {
final String bootstrapServers = args.length > 0 ? args[0] : "localhost:9092";
final String schemaRegistryUrl = args.length > 1 ? args[1] : "http://localhost:8081";
final KafkaStreams streams = buildWikipediaFeed(
bootstrapServers,
schemaRegistryUrl,
"/tmp/kafka-streams");
// Always (and unconditionally) clean local state prior to starting the processing topology.
// We opt for this unconditional call here because this will make it easier for you to play around with the example
// when resetting the application for doing a re-run (via the Application Reset Tool,
// https://docs.confluent.io/platform/current/streams/developer-guide/app-reset-tool.html).
//
// The drawback of cleaning up local state prior is that your app must rebuilt its local state from scratch, which
// will take time and will require reading all the state-relevant data from the Kafka cluster over the network.
// Thus in a production scenario you typically do not want to clean up always as we do here but rather only when it
// is truly needed, i.e., only under certain conditions (e.g., the presence of a command line flag for your app).
// See `ApplicationResetExample.java` for a production-like example.
streams.cleanUp();
streams.start();
// Add shutdown hook to respond to SIGTERM and gracefully close Kafka Streams
Runtime.getRuntime().addShutdownHook(new Thread(streams::close));
}
static KafkaStreams buildWikipediaFeed(final String bootstrapServers,
final String schemaRegistryUrl,
final String stateDir) {
final Properties streamsConfiguration = new Properties();
// Give the Streams application a unique name. The name must be unique in the Kafka cluster
// against which the application is run.
streamsConfiguration.put(StreamsConfig.APPLICATION_ID_CONFIG, "wordcount-avro-example");
streamsConfiguration.put(StreamsConfig.CLIENT_ID_CONFIG, "wordcount-avro-example-client");
// Where to find Kafka broker(s).
streamsConfiguration.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
// Where to find the Confluent schema registry instance(s)
streamsConfiguration.put(AbstractKafkaSchemaSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG, schemaRegistryUrl);
// Specify default (de)serializers for record keys and for record values.
streamsConfiguration.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass().getName());
streamsConfiguration.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, SpecificAvroSerde.class);
streamsConfiguration.put(StreamsConfig.STATE_DIR_CONFIG, stateDir);
streamsConfiguration.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
// Records should be flushed every 10 seconds. This is less than the default
// in order to keep this example interactive.
streamsConfiguration.put(StreamsConfig.COMMIT_INTERVAL_MS_CONFIG, 10 * 1000);
// If Confluent monitoring interceptors are on the classpath,
// then the producer and consumer interceptors are added to the
// streams application.
MonitoringInterceptorUtils.maybeConfigureInterceptorsStreams(streamsConfiguration);
final Serde<String> stringSerde = Serdes.String();
final Serde<Long> longSerde = Serdes.Long();
final StreamsBuilder builder = new StreamsBuilder();
// read the source stream
final KStream<String, WikiFeed> feeds = builder.stream(WIKIPEDIA_FEED);
// aggregate the new feed counts of by user
final KTable<String, Long> aggregated = feeds
// filter out old feeds
.filter((dummy, value) -> value.getIsNew())
// map the user id as key
.map((KeyValueMapper<String, WikiFeed, KeyValue<String, WikiFeed>>) (key, value) -> new KeyValue<>(value.getUser(), value))
// no need to specify explicit serdes because the resulting key and value types match our default serde settings
.groupByKey()
.count();
// write to the result topic, need to override serdes
aggregated.toStream().to(WIKIPEDIA_STATS, Produced.with(stringSerde, longSerde));
return new KafkaStreams(builder.build(), streamsConfiguration);
}
}