Skip to content

Latest commit

 

History

History
46 lines (33 loc) · 1.01 KB

section.md

File metadata and controls

46 lines (33 loc) · 1.01 KB

Frankfurt theme

This is definition 1.


Theorem 1

Let $A\subseteq\N$ be a set such that $\pi_A(x)=x/\delta+O(x^\alpha)$, where $\delta\in[1,\infty)$ and $0\le\alpha<1$. Then we have

$$ M_A(x)=\frac{1}{2\delta}x\log x+ \frac 1 \delta\left(\gamma-\frac{1}{2}\log\frac \delta 2-\frac{1}{2}\right)x +O_A!\left(x^{\frac{2\alpha+2}{\alpha+3}}\right). $$


Theorem 2

Let $A\subseteq\N$ be a set such that, for some $\delta>0$, $$ \pi_A(x)=\frac{x}{\delta\log x}\left(1+\frac{1}{\log x}+O!\left({\frac{1}{\log^2 x}}\right)\right) $$ for all sufficiently large $x$. Then we have, for sufficiently large $x$, $$ \begin{align*} M_A(x) &= \frac{\log2}{\delta}x-\frac{1}{\delta}\frac{x\log\log x}{\log x}+ \frac{1}{\delta}\left(\gamma-\log\frac{\delta}{4}\right)\frac{x\log\log x}{\log x}\ &\qquad+ \frac{1}{2\delta}\frac{x(\log\log x)^2}{\log^2 x}+O_A!\left(\frac{x\log\log x}{\log^2 x}\right). \end{align*} $$