-
Notifications
You must be signed in to change notification settings - Fork 0
/
Rat-in-Maze.cpp
96 lines (84 loc) · 2.03 KB
/
Rat-in-Maze.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
// Backtracking is an algorithmic-technique for solving recursive problems by trying to built every
// every possible solution incrementally and removing those solutions that fail to satilfy the contraints
// of propblem at any point of time
#include <iostream>
using namespace std;
// x and y are position coordinates
// n is the size of the array/maze
// int** arr for dynamic array
bool isSafe(int **arr, int x, int y, int n)
{
if (x < n && y < n && arr[x][y] == 1)
{
return true;
}
return false;
}
bool ratinMaze(int **arr, int x, int y, int n, int **solArr)
{
if (x == n - 1 && y == n - 1)
{
solArr[x][y] = 1;
return true;
}
if (isSafe(arr, x, y, n))
{
solArr[x][y] = 1;
if (ratinMaze(arr, x + 1, y, n, solArr))
{
return true;
}
if (ratinMaze(arr, x, y + 1, n, solArr))
{
return true;
}
solArr[x][y] = 0; // Backtracking
return 0;
}
return false;
}
int main()
{
int n;
cin >> n;
// Memory allocation of row of 1D array through dynamic
int **arr = new int *[n]; // Dynamic Array
for (int i = 0; i < n; i++)
{
arr[i] = new int[n];
}
// Input of 2D array
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
cin >> arr[i][j];
}
}
// Dynamic Memory allocation for solution array
int **solArr = new int *[n]; // Dynamic Array
for (int i = 0; i < n; i++)
{
solArr[i] = new int[n];
for (int j = 0; j < n; j++)
{
solArr[i][j] = 0;
}
}
if (ratinMaze(arr, 0, 0, n, solArr))
{
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
cout << solArr[i][j]<<" ";
}cout <<endl;
}
}
return 0;
}
// 1 0 1 0 1
// 1 1 1 1 1
// 0 1 0 1 0
// 1 0 0 1 1
// 1 1 1 0 1