|
| 1 | +#!/usr/bin/env python3 |
| 2 | + |
| 3 | +# Copyright (c) Microsoft Corporation. All rights reserved. |
| 4 | +# Licensed under the MIT License. |
| 5 | + |
| 6 | +import os |
| 7 | +import shutil |
| 8 | + |
| 9 | +import numpy as np |
| 10 | +from PIL import Image |
| 11 | +from torchvision.datasets.utils import calculate_md5 |
| 12 | + |
| 13 | + |
| 14 | +def generate_test_data(root: str, n_samples: int = 3) -> str: |
| 15 | + """Create test data archive for DeepGlobeLandCover dataset. |
| 16 | +
|
| 17 | + Args: |
| 18 | + root: path to store test data |
| 19 | + n_samples: number of samples. |
| 20 | +
|
| 21 | + Returns: |
| 22 | + md5 hash of created archive |
| 23 | + """ |
| 24 | + dtype = np.uint8 |
| 25 | + size = 2 |
| 26 | + |
| 27 | + folder_path = os.path.join(root, "data") |
| 28 | + |
| 29 | + train_img_dir = os.path.join(folder_path, "data", "training_data", "images") |
| 30 | + train_mask_dir = os.path.join(folder_path, "data", "training_data", "masks") |
| 31 | + test_img_dir = os.path.join(folder_path, "data", "test_data", "images") |
| 32 | + test_mask_dir = os.path.join(folder_path, "data", "test_data", "masks") |
| 33 | + |
| 34 | + os.makedirs(train_img_dir, exist_ok=True) |
| 35 | + os.makedirs(train_mask_dir, exist_ok=True) |
| 36 | + os.makedirs(test_img_dir, exist_ok=True) |
| 37 | + os.makedirs(test_mask_dir, exist_ok=True) |
| 38 | + |
| 39 | + train_ids = [1, 2, 3] |
| 40 | + test_ids = [8, 9, 10] |
| 41 | + |
| 42 | + for i in range(n_samples): |
| 43 | + train_id = train_ids[i] |
| 44 | + test_id = test_ids[i] |
| 45 | + |
| 46 | + dtype_max = np.iinfo(dtype).max |
| 47 | + train_arr = np.random.randint(dtype_max, size=(size, size, 3), dtype=dtype) |
| 48 | + train_img = Image.fromarray(train_arr) |
| 49 | + train_img.save(os.path.join(train_img_dir, str(train_id) + "_sat.jpg")) |
| 50 | + |
| 51 | + test_arr = np.random.randint(dtype_max, size=(size, size, 3), dtype=dtype) |
| 52 | + test_img = Image.fromarray(test_arr) |
| 53 | + test_img.save(os.path.join(test_img_dir, str(test_id) + "_sat.jpg")) |
| 54 | + |
| 55 | + train_mask_arr = np.full((size, size, 3), (0, 255, 255), dtype=dtype) |
| 56 | + train_mask_img = Image.fromarray(train_mask_arr) |
| 57 | + train_mask_img.save(os.path.join(train_mask_dir, str(train_id) + "_mask.png")) |
| 58 | + |
| 59 | + test_mask_arr = np.full((size, size, 3), (255, 0, 255), dtype=dtype) |
| 60 | + test_mask_img = Image.fromarray(test_mask_arr) |
| 61 | + test_mask_img.save(os.path.join(test_mask_dir, str(test_id) + "_mask.png")) |
| 62 | + |
| 63 | + # Create archive |
| 64 | + shutil.make_archive(folder_path, "zip", folder_path) |
| 65 | + shutil.rmtree(folder_path) |
| 66 | + return calculate_md5(f"{folder_path}.zip") |
| 67 | + |
| 68 | + |
| 69 | +if __name__ == "__main__": |
| 70 | + md5_hash = generate_test_data(os.getcwd(), 3) |
| 71 | + print(md5_hash + "\n") |
0 commit comments