forked from generalmimon/ks-table-py-benchmark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.py
68 lines (59 loc) · 2.28 KB
/
index.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from kaitaistruct import KaitaiStream
from compiled.test_cell import TestCell
from compiled.test_col_fixed import TestColFixed
from generate_sample import N_COLUMN_REPS
import time
import random
import statistics
import sys
# https://stackoverflow.com/a/34482761
def progressbar(it, prefix="", size=60, file=sys.stdout):
count = len(it)
def show(j):
x = int(size*j/count)
file.write("%s[%s%s] %i/%i\r" % (prefix, "#"*x, "."*(size-x), j, count))
file.flush()
show(0)
for i, item in enumerate(it):
yield item
show(i+1)
file.write("\n")
file.flush()
num_iterations = 64
times = {}
cases = ['test_cell', 'test_col_fixed']
for k in cases:
times[k] = []
# https://www.peterbe.com/plog/how-to-do-performance-micro-benchmarks-in-python
for i in progressbar(range(num_iterations), "Running benchmark: ", 40):
choice = cases[random.randint(0, 1)]
k = None
row_0 = None
t0 = time.time()
with open('./sample.bin', 'rb') as f:
if choice == 'test_cell':
k = TestCell(KaitaiStream(f))
row_0 = k.table.table_rows[0].entries
elif choice == 'test_col_fixed':
k = TestColFixed(KaitaiStream(f))
row_0_type = k.table.table_rows[0]
row_0 = N_COLUMN_REPS * [row_0_type.a, row_0_type.b, row_0_type.c, row_0_type.d]
t1 = time.time()
assert len(k.table.table_rows) == 65536, 'len(k.table.table_rows) = {} must be {}'.format(len(k.table.table_rows), 65536)
if row_0 != N_COLUMN_REPS * [0x7a46, 0x86b97d9c, 0.842150092124939, 0.5340359913176319]:
breakpoint()
assert row_0 == N_COLUMN_REPS * [0x7a46, 0x86b97d9c, 0.842150092124939, 0.5340359913176319], 'row_0 = {} does not match'.format(row_0)
times[choice].append((t1 - t0) * 1000)
stats = [
('MEDIAN', lambda numbers: statistics.median(numbers)),
('MEAN', lambda numbers: statistics.mean(numbers)),
('STDEV', lambda numbers: statistics.stdev(numbers)),
('1st', lambda numbers: numbers[0]),
('MIN', lambda numbers: min(numbers)),
('MAX', lambda numbers: max(numbers)),
]
for name, numbers in times.items():
print('FUNCTION: {} [Used {} times]'.format(name, len(numbers)))
for stat in stats:
print('\t{:6} {:=10.4f} ms'.format(stat[0], stat[1](numbers)))
print('')