-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatchup_picks.py
202 lines (152 loc) · 6.43 KB
/
matchup_picks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# Databricks notebook source
import pandas as pd
import numpy as np
df_stats = pd.read_csv('../output/df_stats.csv')
df_stats.head()
df_stats_2021 = pd.read_csv('../output/df_stats_2021.csv')
df_stats = pd.concat([df_stats, df_stats_2021], axis=0)
df_stats
# COMMAND ----------
#column list
print(df_stats.columns)
print(df_stats.dtypes)
# COMMAND ----------
# COMMAND ----------
# this data is dirty! less than 15% of rows contain all the stats...
# skip imputation or drop, we will work around this in model selection
filter_cols = [
x for x in df_stats.columns if x not in ['spreadOpen',
'overUnder',
'overUnderOpen',
'homeMoneyline',
'awayMoneyline']
]
df_stats.dropna(subset=filter_cols).count().id/df_stats.count().id*1.0
# COMMAND ----------
# feature processing of offensive stats
df = df_stats.copy()
df = df.set_index(['school','season'])
#df = df.dropna(subset=['completionAttempts', 'homeAway'])
df.B = df.homeScore-df.awayScore+df.spread
df.B = df.apply(
lambda x: x.loc['homeScore'] - x.loc['awayScore'] + x.loc['spread']
if x.loc['homeAway']=='home'
else x.loc['awayScore'] - x.loc['homeScore'] + x.loc['spread']
if x.loc['homeAway']=='away'
else 0,
axis=1
)
df['completionAttempts'] = df.completionAttempts.str.split('-')
df['completions'] = (
df.completionAttempts.apply(lambda x: x[0] if type(x) is list else x).astype(int, errors='ignore')
)
df['attempts'] = (
df.completionAttempts.apply(lambda x: x[1] if type(x) is list else x).astype(int, errors='ignore')
)
df['completionPercentage'] = (
df.apply(lambda x: x.loc['completions']/
x.loc['attempts']*1.0
if type(x.loc['completions'])==int
and type(x.loc['attempts'])==int
else np.NaN,
axis=1)
)
df['fourthDownEff'] = df.fourthDownEff.str.split('-')
df['fourthDownEff'] = (
df.fourthDownEff.apply(lambda x: int(x[0]) if type(x) is list else x)/
df.fourthDownEff.apply(lambda x: float(x[1]) if type(x)==list else x)*1.0
)
df['thirdDownEff'] = df.thirdDownEff.str.split('-')
df['thirdDownEff'] = (
df.thirdDownEff.apply(lambda x: int(x[0]) if type(x) is list else x)/
df.thirdDownEff.apply(lambda x: float(x[1]) if type(x)==list else x)*1.0
)
df['totalPenaltiesYards'] = df.totalPenaltiesYards.str.split('-')
df['totalpenalties'] = (df.totalPenaltiesYards
.apply(lambda x: x[0] if type(x) is list else x)
.astype(int, errors='ignore'))
df['penaltyYards'] = (df.totalPenaltiesYards
.apply(lambda x: x[1] if type(x) is list else x)
.apply(lambda x: 0 if type(x) is list and x[0]=='0' else x)
.apply(lambda x: np.nan if x=='' else x)
.astype(int, errors='ignore')
)
df['possessionTime'] = df.possessionTime.str.split(':')
df['possessionTime'] = df.possessionTime.apply(lambda x: int(x[0])*60+int(x[1]) if type(x) is list else np.nan)
feature_list_excl=[
'id',
'completionAttempts',
'conference',
'homeAway',
#'seasonType',
'homeTeam',
'awayTeam',
'homeConference',
'awayConference',
'lines',
'formattedSpread',
'totalPenaltiesYards'
]
df = df.drop(feature_list_excl, axis=1)
df_fut = df.xs(2021.0, level=1)
df = df.drop(2021.0, level=1)
# COMMAND ----------
df.index.levels[1]
# COMMAND ----------
from sklearn.experimental import enable_hist_gradient_boosting
from sklearn.naive_bayes import MultinomialNB
from sklearn.ensemble import HistGradientBoostingClassifier
from sklearn.model_selection import train_test_split
curweek = 10
pred = df[df.week==curweek].drop('week', axis=1).B
df_feed = df[(df.week<curweek) & (df.week>(curweek-5))].drop('week', axis=1)
df_feed = df_feed.loc[pred.index.intersection(df_feed.index)]
pred = pred.loc[pred.index.intersection(df_feed.index)]
pred = pred.apply(lambda x: -1 if x<=0 else 1)
df_feed = df_feed.groupby(level=[0,1]).median()
X_train, X_test, Y_train, Y_test = train_test_split(df_feed, pred, train_size=0.8)
# COMMAND ----------
pred.groupby(pred>0).count()
# COMMAND ----------
from sklearn.experimental import enable_hist_gradient_boosting
from sklearn.ensemble import HistGradientBoostingClassifier as hgbc
from sklearn.utils.class_weight import compute_class_weight
from sklearn.metrics import precision_score
from sklearn.metrics import balanced_accuracy_score
clf = hgbc()
clf.fit(X_train, Y_train)
print(precision_score(Y_test, clf.predict(X_test), average=None))
print(balanced_accuracy_score(Y_test, clf.predict(X_test)))
print(compute_class_weight('balanced', [-1, 1], y=Y_test.values))
# COMMAND ----------
df_feed_fut = df_fut[df_fut.week<curweek].drop('week', axis=1)
df_feed_fut = df_feed_fut.groupby(level=0).median()
df_cur_pred = pd.DataFrame(index=df_feed_fut.index, data=clf.predict_proba(df_feed_fut))
# COMMAND ----------
import requests
api_key='redacted'
test_headers = {'Authorization': 'Bearer ' + api_key}
df_schedule = pd.read_json(requests.get('https://api.collegefootballdata.com/games', params={'year':2021},headers=test_headers).content)
df_schedule.head()
df_schedule = df_schedule[df_schedule['week']==curweek][['home_team', 'away_team']]
df_schedule = df_schedule.set_index(['home_team', 'away_team'])
# COMMAND ----------
df_bets = df_schedule.copy()
df_bets = df_bets.assign(home_0=df_bets.join(df_cur_pred[0], on='home_team'),
home_1=df_bets.join(df_cur_pred[1], on='home_team'),
away_0=df_bets.join(df_cur_pred[0], on='away_team'),
away_1=df_bets.join(df_cur_pred[1], on='away_team')
)
#df_bets['pick'] = df_bets.apply(lambda x: x.loc[] if (x.loc['home_0'] < x.loc['away_0']) else x.loc['away_team'], axis=1)
df_bets['diff_0'] = abs(df_bets.home_0-df_bets.away_0)
df_bets['diff_1'] = abs(df_bets.home_1-df_bets.away_1)
df_bets['hlatnp'] = df_bets.home_0>df_bets.away_0
df_bets.sort_values(by='diff_0', ascending=False).head(24)
# COMMAND ----------
df_test = pd.concat([Y_test, pd.Series(clf.predict(X_test), index=Y_test.index)], axis=1)
df_test = df_test.join(df[df.week==7][['homeAway','homeScore', 'awayScore', 'spread', 'actual_spread']].reindex(df_test.index))
df_test
# COMMAND ----------
# MAGIC %md
# MAGIC ### Todo:
# MAGIC * matchups -> predict result from clf scores