-
Notifications
You must be signed in to change notification settings - Fork 9
/
main.py
604 lines (577 loc) · 32.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
# 模型训练的主代码
import numpy as np
import tensorflow as tf
import os
import scipy.io as scio
import argparse
import cv2
from shutil import copyfile
import matplotlib.pyplot as plt
from traffic_interaction_scene import TrafficInteraction
from traffic_interaction_scene import Visible
import time
from model_agent_maddpg import MADDPG
from replay_buffer import ReplayBuffer
import io
from PIL import Image
def create_init_update(oneline_name, target_name, tau=0.99):
"""
:param oneline_name: the online model name
:param target_name: the target model name
:param tau: The proportion of each transfer from the online model to the target model
:return:
"""
online_var = [i for i in tf.trainable_variables() if oneline_name in i.name]
target_var = [i for i in tf.trainable_variables() if target_name in i.name]
target_init = [tf.assign(target, online) for online, target in zip(online_var, target_var)]
target_update = [tf.assign(target, (1 - tau) * online + tau * target) for online, target in
zip(online_var, target_var)] # 按照比例用online更新target
return target_init, target_update
def get_agents_action(sta, sess, agent, noise_range=0.0):
"""
:param sta: the state of the agent
:param sess: the session of tf
:param agent: the model of the agent
:param noise_range: the noise range added to the agent model output
:return: the action of the agent in its current state
"""
agent1_action = agent.action(state=[sta], sess=sess) + np.random.randn(1) * noise_range
return agent1_action
def train_agent_seq(agent_ddpg, agent_ddpg_target, agent_memory, agent_actor_target_update,
agent_critic_target_update, sess, summary_writer, args):
batch, w_id, eid = agent_memory.getBatch(
args.batch_size)
if not batch:
return
agent_num = args.o_agent_num + 1
total_obs_batch = np.zeros((args.batch_size, agent_num, agent_num * 4))
rew_batch = np.zeros((args.batch_size,))
total_act_batch = np.zeros((args.batch_size, agent_num))
total_next_obs_batch = np.zeros((args.batch_size, agent_num, agent_num * 4))
next_state_mask = np.zeros((args.batch_size,))
for k, (s0, a, r, s1, done) in enumerate(batch):
total_obs_batch[k] = s0
rew_batch[k] = r
total_act_batch[k] = a
if not done:
total_next_obs_batch[k] = s1
next_state_mask[k] = 1
other_act = []
act_batch = np.array(total_act_batch[:, 0]) # 获取本agent动作集
act_batch = act_batch.reshape(act_batch.shape[0], 1)
for n in range(1, agent_num):
other_act.append(total_act_batch[:, n])
other_act_batch = np.vstack(other_act).transpose()
e_id = eid
obs_batch = total_obs_batch[:, 0, :] # 获取本agent当前状态集
target = rew_batch.reshape(-1, 1)
td_error = abs(agent_ddpg_target.Q(
state=obs_batch, action=act_batch, other_action=other_act_batch, sess=sess) - target)
if e_id is not None:
agent_memory.update_priority(e_id, td_error)
agent_ddpg.train_critic(state=obs_batch, action=act_batch, other_action=other_act_batch, target=target, sess=sess,
summary_writer=summary_writer, lr=args.critic_lr)
agent_ddpg.train_actor(state=obs_batch, other_action=other_act_batch, sess=sess, summary_writer=summary_writer,
lr=args.actor_lr)
sess.run([agent_actor_target_update, agent_critic_target_update]) # 从online模型更新到target模型
def parse_args():
parser = argparse.ArgumentParser("MADDPG experiments for multiagent traffic interaction environments")
parser.add_argument("--num_episodes", type=int, default=1000, help="number of episodes") # episode次数
parser.add_argument("--o_agent_num", type=int, default=6, help="other agent numbers")
parser.add_argument("--seq_max_step", type=int, default=12, help="the step of multi-step learning")
parser.add_argument("--actor_lr", type=float, default=1e-4, help="learning rate for Adam optimizer") # 学习率
parser.add_argument("--critic_lr", type=float, default=1e-3, help="learning rate for Adam optimizer") # 学习率
parser.add_argument("--gamma", type=float, default=0.80, help="discount factor") # 折扣率
parser.add_argument("--trans_r", type=float, default=0.998, help="transfer rate for online model to target model")
parser.add_argument("--batch_size", type=int, default=128,
help="number of episodes to optimize at the same time") # 经验采样数目
parser.add_argument("--learn_start", type=int, default=20000,
help="learn start step") # 经验采样数目
parser.add_argument("--lane_num", type=int, default=12,
help="the num of lane of intersection") # 车道总数,12表示双向六车道交叉口
parser.add_argument("--num_units", type=int, default=64, help="number of units in the mlp")
parser.add_argument("--collision_thr", type=float, default=2, help="the threshold for collision")
parser.add_argument("--actual_lane", action="store_true", default=False, help="")
parser.add_argument("--c_mode", type=str, default="closer",
help="the way of choosing closer cars, front ,front-end or closer")
parser.add_argument("--model", type=str, default="MADDPG",
help="the model for training, MADDPG or DDPG")
parser.add_argument("--exp_name", type=str, default="test ", help="name of the experiment") # 实验名
parser.add_argument("--type", type=str, default="test", help="type of experiment train or test")
parser.add_argument("--mat_path", type=str, default="./data/train/arvTimeNewVeh_for_train.mat",
help="the path of mat file")
parser.add_argument("--save_dir", type=str, default="model_data",
help="directory in which training state and model should be saved") # 模型存储
parser.add_argument("--save_rate", type=int, default=1,
help="save model once every time this many episodes are completed") # 存储模型的回合间隔
parser.add_argument("--load_dir", type=str, default="",
help="directory in which training state and model are loaded") # 模型加载目录
parser.add_argument("--video_name", type=str, default="",
help="if it not empty, program will generate a result video (.mp4 format defaultly)with the result imgs")
parser.add_argument("--visible", action="store_true", default=False, help="visible or not")
# Evaluation
parser.add_argument("--restore", action="store_true", default=False) # 恢复之前的模型,在 load-dir 或 save-dir
parser.add_argument("--benchmark", action="store_true", default=False) # 用保存的模型跑测试
parser.add_argument("--batch_test", action="store_true", default=False) # 是否批量测试
parser.add_argument("--benchmark_iters", type=int, default=6000, help="number of iterations run for benchmarking")
parser.add_argument("--benchmark-dir", type=str, default="./benchmark_files/",
help="directory where benchmark data is saved")
parser.add_argument("--plots-dir", type=str, default="./learning_curves/",
help="directory where plot data is saved") # 训练曲线的目录
return parser.parse_args()
def benchmark(model, arrive_time, sess):
total_c = 0
collisions_count = 0
for mat_file in ["arvTimeNewVeh_300.mat", "arvTimeNewVeh_600.mat", "arvTimeNewVeh_900.mat"]:
data = scio.loadmat(mat_file) # 加载.mat数据
arrive_time = data["arvTimeNewVeh"]
env = TrafficInteraction(arrive_time, 150, args, vm=6, virtual_l=not args.actual_lane)
# env = TrafficInteraction(arrive_time, 150, args, vm=6, vM=20, v0=12)
for i in range(args.benchmark_iters):
for lane in range(4):
for ind, veh in enumerate(env.veh_info[lane]):
o_n = veh["state"]
agent1_action = [[0]]
if veh["control"]:
agent1_action = get_agents_action(o_n[0], sess, model, noise_range=0) # 模型根据当前状态进行预测
env.step(lane, ind, agent1_action[0][0]) # 环境根据输入的动作返回下一时刻的状态和奖励
# env.step(lane, ind, 0) # 环境根据输入的动作返回下一时刻的状态和奖励
state_next, reward, actions, collisions, estm_collisions, collisions_per_veh = env.scene_update()
for k in range(len(actions)):
if collisions_per_veh[k][0] > 0:
collisions_count += 1
if i % 1000 == 0:
print("i: %s collisions_rate: %s" % (i, float(collisions_count) / (env.id_seq + total_c)))
env.delete_vehicle()
total_c += env.id_seq
print("vehicle number: %s; collisions occurred number: %s; collisions rate: %s" % (
total_c, collisions_count, float(collisions_count) / total_c))
return float(collisions_count) / total_c
def train():
# 建立Agent,Agent对应两个DDPG结构,一个是eval-net,一个是target-net
agent1_ddpg = MADDPG('agent1', actor_lr=args.actor_lr, critic_lr=args.critic_lr, nb_other_aciton=args.o_agent_num,
num_units=args.num_units, model=args.model)
agent1_ddpg_target = MADDPG('agent1_target', actor_lr=args.actor_lr, critic_lr=args.critic_lr,
nb_other_aciton=args.o_agent_num, num_units=args.num_units, model=args.model)
saver = tf.train.Saver() # 为存储模型预备
agent1_actor_target_init, agent1_actor_target_update = create_init_update('agent1actor', 'agent1_targetactor',
tau=args.trans_r)
agent1_critic_target_init, agent1_critic_target_update = create_init_update('agent1_critic', 'agent1_target_critic',
tau=args.trans_r)
count_n = 0
col = tf.Variable(0, dtype=tf.int8)
collisions_op = tf.summary.scalar('collisions', col)
etsm_col = tf.Variable(0, dtype=tf.int8)
etsm_collisions_op = tf.summary.scalar('estimate_collisions', etsm_col)
v_mean = tf.Variable(0, dtype=tf.float32)
v_mean_op = tf.summary.scalar('v_mean', v_mean)
collision_rate = tf.Variable(0, dtype=tf.float32)
collision_rate_op = tf.summary.scalar('collision_rate', collision_rate)
acc_mean = tf.Variable(0, dtype=tf.float32)
acc_mean_op = tf.summary.scalar('acc_mean', acc_mean)
reward_mean = tf.Variable(0, dtype=tf.float32)
reward_mean_op = tf.summary.scalar('reward_mean', reward_mean)
collisions_mean = tf.Variable(0, dtype=tf.float32)
collisions_mean_op = tf.summary.scalar('collisions_mean', collisions_mean)
estm_collisions_mean = tf.Variable(0, dtype=tf.float32)
estm_collisions_mean_op = tf.summary.scalar('estm_collisions_mean', estm_collisions_mean)
collisions_veh_numbers = tf.Variable(0, dtype=tf.int32)
collisions_veh_numbers_op = tf.summary.scalar('collision_veh_numbers', collisions_veh_numbers)
vehs_jerk = tf.Variable(0, dtype=tf.int32)
vehs_jerk_op = tf.summary.scalar('jerk', vehs_jerk)
config = tf.ConfigProto()
config.gpu_options.allow_growth = False
config.gpu_options.per_process_gpu_memory_fraction = 0.050
sess = tf.Session(config=config)
sess.run(tf.global_variables_initializer())
sess.run([agent1_actor_target_init, agent1_critic_target_init])
if args.restore:
saver.restore(sess, tf.train.latest_checkpoint(os.path.join(args.save_dir, args.exp_name)))
print("load cptk file from " + tf.train.latest_checkpoint(os.path.join(args.save_dir, args.exp_name)))
summary_writer = tf.summary.FileWriter(os.path.join(args.save_dir, args.exp_name), graph=tf.get_default_graph())
# 设置经验池最大空间
agent1_memory_seq = ReplayBuffer(500000, args.batch_size, args.learn_start, 50000, rand_s=True)
reward_list = []
jerk_list = []
collisions_list = []
estm_collisions_list = []
statistic_count = 0
mean_window_length = 50
state_now = []
collisions_count = 0
rate_latest = 1.0
test_rate_latest = 1.0
time_total = []
seq_max_step = args.seq_max_step
for epoch in range(args.num_episodes):
collisions_count_last = collisions_count
args.gamma = np.tanh(float(epoch + 6) / 12.0) * 0.90
data = scio.loadmat("./data/train/arvTimeNewVeh_for_train.mat") # 加载训练.mat数据
arrive_time = data["arvTimeNewVeh"]
env = TrafficInteraction(arrive_time, 150, args, vm=6, virtual_l=not args.actual_lane, lane_num=args.lane_num)
for i in range(6000):
state_now.clear()
for lane in range(args.lane_num):
for ind, veh in enumerate(env.veh_info[lane]):
o_n = veh["state"]
agent1_action = [[0]]
if veh["control"]:
count_n += 1
agent1_action = get_agents_action(o_n[0], sess, agent1_ddpg, noise_range=0.2) # 模型根据当前状态进行预测
state_now.append(o_n)
env.step(lane, ind, agent1_action[0][0])
ids, state_next, reward, actions, collisions, estm_collisions, collisions_per_veh, jerks, lock = env.scene_update()
for seq, car_index in enumerate(ids):
env.veh_info[car_index[0]][car_index[1]]["buffer"].append(
[state_now[seq], actions[seq], reward[seq], state_next[seq],
env.veh_info[car_index[0]][car_index[1]]["Done"]])
if env.veh_info[car_index[0]][car_index[1]]["Done"] or env.veh_info[car_index[0]][car_index[1]][
"count"] > seq_max_step:
seq_data = env.veh_info[car_index[0]][car_index[1]]["buffer"]
if env.veh_info[car_index[0]][car_index[1]]["Done"]:
r_target = seq_data[-1][2]
else:
other_act_next = []
for n in range(1, args.o_agent_num + 1):
other_act_next.append(agent1_ddpg_target.action([seq_data[-1][3][n]], sess)[0][0])
r_target = seq_data[-1][2] + args.gamma * agent1_ddpg_target.Q(state=[seq_data[-1][3][0]],
action=agent1_ddpg_target.action(
[seq_data[-1][3][0]],
sess), other_action=[
other_act_next], sess=sess)[0][0]
for cur_data in reversed(seq_data[:-1]):
r_target = cur_data[2] + args.gamma * r_target
agent1_memory_seq.add(np.array(seq_data[0][0]), np.array(seq_data[0][1]), r_target,
np.array(seq_data[0][3]), False)
env.veh_info[car_index[0]][car_index[1]]["buffer"].pop(0)
env.veh_info[car_index[0]][car_index[1]]["count"] -= 1
reward_list += reward
jerk_list += jerks
if len(collisions_per_veh) > 0:
collisions_list += list(np.array(collisions_per_veh)[:, 0])
estm_collisions_list += list(np.array(collisions_per_veh)[:, 1])
reward_list = reward_list[-mean_window_length:]
jerk_list = jerk_list[-mean_window_length:]
collisions_list = collisions_list[-mean_window_length:]
estm_collisions_list = estm_collisions_list[-mean_window_length:]
for k in range(len(actions)):
if collisions_per_veh[k][0] > 0:
collisions_count += 1
if count_n > 10000:
statistic_count += 1
time_t = time.time()
train_agent_seq(agent1_ddpg, agent1_ddpg_target, agent1_memory_seq,
agent1_actor_target_update, agent1_critic_target_update, sess, summary_writer, args)
time_total.append(time.time() - time_t)
a = tf.trainable_variables
if len(actions) > 0:
summary_writer.add_summary(sess.run(collisions_op, {col: collisions}), statistic_count)
summary_writer.add_summary(sess.run(etsm_collisions_op, {etsm_col: estm_collisions}),
statistic_count)
summary_writer.add_summary(sess.run(v_mean_op, {v_mean: np.mean(np.array(state_next)[:, 0, 1])}),
statistic_count)
summary_writer.add_summary(sess.run(vehs_jerk_op, {vehs_jerk: np.mean(jerk_list)}), statistic_count)
summary_writer.add_summary(
sess.run(acc_mean_op, {acc_mean: np.mean(np.array(state_next)[:, 0, 2])}),
statistic_count)
summary_writer.add_summary(sess.run(reward_mean_op, {reward_mean: np.mean(reward_list)}),
statistic_count)
summary_writer.add_summary(sess.run(collisions_mean_op, {collisions_mean: np.mean(collisions_list)}),
statistic_count)
summary_writer.add_summary(
sess.run(estm_collisions_mean_op, {estm_collisions_mean: np.mean(estm_collisions_list)}),
statistic_count)
summary_writer.add_summary(
sess.run(collisions_veh_numbers_op, {collisions_veh_numbers: collisions_count}), statistic_count)
if i % 100 == 0:
print(
"reward mean: %s;epoch: %s;i: %s;count: %s;collisions_count: %s latest_c_rate: %s;"
"test best c_rate: %s;a-lr: %0.6f; c-lr: %0.6f; time_mean: %s" % (
np.mean(reward_list), epoch, i, count_n, collisions_count, rate_latest, test_rate_latest,
args.actor_lr, args.critic_lr, np.mean(time_total)))
env.delete_vehicle()
if epoch % args.save_rate == 0:
print('update model to ' + os.path.join(args.save_dir, args.exp_name, str(epoch) + '.cptk'))
saver.save(sess, os.path.join(args.save_dir, args.exp_name, str(epoch) + '.cptk'))
if rate_latest > (collisions_count - collisions_count_last) / float(env.id_seq):
rate_latest = (collisions_count - collisions_count_last) / float(env.id_seq)
copyfile(
os.path.join(args.save_dir, args.exp_name, str(epoch) + '.cptk.data-00000-of-00001'),
os.path.join(args.save_dir, args.exp_name, 'best.cptk.data-00000-of-00001'))
copyfile(
os.path.join(args.save_dir, args.exp_name, str(epoch) + '.cptk.index'),
os.path.join(args.save_dir, args.exp_name, 'best.cptk.index'))
copyfile(
os.path.join(args.save_dir, args.exp_name, str(epoch) + '.cptk.meta'),
os.path.join(args.save_dir, args.exp_name, 'best.cptk.meta'))
summary_writer.add_summary(sess.run(collision_rate_op, {
collision_rate: (collisions_count - collisions_count_last) / float(env.id_seq)}),
epoch)
if epoch % 2 == 0 and args.benchmark:
c_rate = benchmark(agent1_ddpg, arrive_time, sess)
if c_rate < test_rate_latest:
test_rate_latest = c_rate
copyfile(
os.path.join(args.save_dir, args.exp_name, str(epoch) + '.cptk.data-00000-of-00001'),
os.path.join(args.save_dir, args.exp_name, 'test_best.cptk.data-00000-of-00001'))
copyfile(
os.path.join(args.save_dir, args.exp_name, str(epoch) + '.cptk.index'),
os.path.join(args.save_dir, args.exp_name, 'test_best.cptk.index'))
copyfile(
os.path.join(args.save_dir, args.exp_name, str(epoch) + '.cptk.meta'),
os.path.join(args.save_dir, args.exp_name, 'test_best.cptk.meta'))
if epoch % 5 == 4:
args.actor_lr = args.actor_lr * 0.9
args.critic_lr = args.critic_lr * 0.9
sess.close()
# 特征重要性分析工具
def actor_feature_importance_analyze(state, model, sess, idx=0):
plt.figure(0)
imps = np.zeros(state.shape[0])
base = get_agents_action(state, sess, model)[0]
for j in range(imps.shape[0]):
fes = []
for i in range(100):
tmp = state.copy()
tmp[j] += np.random.rand(1) * 10
fes.append(tmp)
imps[j] = np.mean(abs((model.action(state=fes, sess=sess).reshape(100) - base[0])))
if sum(imps) > 1:
print(state, imps)
plt.bar([i for i in range(len(imps))], imps)
plt.savefig("result_img/feature_importance_curve_%s.png" % idx)
plt.close()
def test():
agent1_ddpg_test = MADDPG('agent1', actor_lr=args.actor_lr, critic_lr=args.critic_lr,
nb_other_aciton=args.o_agent_num, num_units=args.num_units)
saver = tf.train.Saver()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
sess.run(tf.global_variables_initializer())
model_path = os.path.join(args.save_dir, args.exp_name, "test_best.cptk")
if not os.path.exists(model_path + ".meta"):
model_path = tf.train.latest_checkpoint(os.path.join(args.save_dir, args.exp_name))
saver.restore(sess, model_path)
print("load cptk file from " + model_path)
visible = Visible(lane_w=2.5, control_dis=150, l_mode="actual", c_mode=args.c_mode, lane_num=args.lane_num)
size = (960, 960)
fps = 20
video_writer = cv2.VideoWriter()
if args.video_name != "":
video_writer = cv2.VideoWriter(os.path.join("result_imgs", args.video_name + ".avi"),
cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'), fps, size)
mat_path = os.path.join("./data/test", args.mat_path)
data = scio.loadmat(mat_path) # 加载.mat数据
arrive_time = data["arvTimeNewVeh"]
print("mat_path: ", mat_path)
lock_total = 0
collisions_count = 0
time_total = []
env = TrafficInteraction(arrive_time, 150, args, show_col=False, virtual_l=not args.actual_lane,
lane_num=args.lane_num)
jerk_total = 0
for i in range(1000):
for lane in range(args.lane_num):
for ind, veh in enumerate(env.veh_info[lane]):
o_n = veh["state"]
agent1_action = [[0]]
if veh["control"]:
temp_t = time.time()
agent1_action = get_agents_action(o_n[0], sess, agent1_ddpg_test, noise_range=0) # 模型根据当前状态进行预测
time_total.append(time.time() - temp_t)
env.step(lane, ind, agent1_action[0][0]) # 环境根据输入的动作返回下一时刻的状态和奖励
ids, state_next, reward, actions, collisions, estm_collisions, collisions_per_veh, jerks, lock = env.scene_update()
jerk_total += sum(jerks)
lock_total += lock
for k in range(len(actions)):
if collisions_per_veh[k][0] > 0:
collisions_count += 1
if i % 50 == 0:
print("i: %s collisions_rate: %s reward std: %s reward mean: %s lock_num: %s" % (
i, float(collisions_count) / env.id_seq, np.std(reward), np.mean(reward), lock_total))
if (args.visible or args.video_name != ""):
visible.show(env, i)
img = cv2.imread("result_imgs/%s.png" % i)
# cv2.putText(img, "density: " + str(args.mat_pa), (200, 160), cv2.FONT_HERSHEY_COMPLEX, 0.5, (0, 0, 0), 1)
cv2.putText(img, "frame: " + str(i), (200, 200), cv2.FONT_HERSHEY_COMPLEX, 0.5, (0, 0, 0), 1)
cv2.putText(img, "veh: " + str(env.id_seq), (200, 240), cv2.FONT_HERSHEY_COMPLEX, 0.5, (0, 0, 0), 1)
cv2.putText(img, "c-veh: %s" % collisions_count, (200, 280), cv2.FONT_HERSHEY_COMPLEX, 0.5,
(0, 0, 255),
1)
cv2.putText(img, "c-r: %0.4f" % (float(collisions_count) / env.id_seq), (200, 320),
cv2.FONT_HERSHEY_COMPLEX,
0.5, (0, 0, 255), 1)
cv2.putText(img, "p_veh: " + str(env.passed_veh), (200, 360), cv2.FONT_HERSHEY_COMPLEX, 0.5,
(0, 0, 0),
1)
cv2.putText(img,
"pT-m: %0.4f s" % (
float(env.passed_veh_step_total) / (env.passed_veh + 0.0001) * env.deltaT),
(200, 400), cv2.FONT_HERSHEY_COMPLEX,
0.5, (0, 0, 0), 1)
if args.visible:
cv2.imshow("unsignalized intersection", img)
cv2.waitKey(1)
if args.video_name != "":
video_writer.write(img)
env.delete_vehicle()
# if i < 2000:
# scio.savemat("test_mat.mat", {"veh_info": env.veh_info_record})
video_writer.release()
cv2.destroyAllWindows()
choose_veh_visible = False
veh_route = False
if veh_route:
n = 0
color = {"0": 'darksalmon', "3": 'orchid', "7": 'b', "10": 'mediumslateblue', "9": "mediumseagreen"}
plt.figure(0, figsize=(6.4, 3.2))
plt.rcParams['font.family'] = ['SimHei']
plt.rcParams['xtick.direction'] = 'in'
plt.rcParams['ytick.direction'] = 'in'
# 绘制轨迹
t_l = 85
leg = {"0": '目标车道-车辆', "3": '冲突车道1-车辆', "7": '冲突车道2-车辆', "10": '冲突车道3-车辆', "9": "冲突车道4-车辆"}
idx = ["0", "3", "7", "10", "9"]
for veh in env.virtual_data:
n += 1
x = [t[0] for t in env.virtual_data[veh] if t_l - 30 < t[0] < t_l]
y = [t[1] for t in env.virtual_data[veh] if t_l - 30 < t[0] < t_l]
if len(idx) > 0 and veh.split("_")[0] == idx[0]:
plt.plot(x, y, color[veh.split("_")[0]], label=leg[veh.split("_")[0]])
plt.legend()
leg.pop(idx[0])
idx.pop(0)
else:
plt.plot(x, y, color[veh.split("_")[0]])
# plt.legend()
plt.xlabel("时间/s")
plt.ylabel("车辆与冲突点的距离/m")
# plt.savefig("exp_result_imgs/route.png")
png1 = io.BytesIO()
plt.savefig(png1, format="png", dpi=500, pad_inches=.1, bbox_inches='tight')
png2 = Image.open(png1)
png2.save("exp_result_imgs/route.tiff")
png1.close()
# plt.savefig("result_imgs/efficiency.png")
plt.close()
plt.close()
plt.figure(1, figsize=(6.4, 3.2))
plt.rcParams['font.family'] = ['SimHei']
plt.rcParams['xtick.direction'] = 'in'
plt.rcParams['ytick.direction'] = 'in'
# 绘制速度
t_l = 85
leg = {"0": '目标车道-车辆', "3": '冲突车道1-车辆', "7": '冲突车道2-车辆', "10": '冲突车道3-车辆', "9": "冲突车道4-车辆"}
idx = ["0", "3", "7", "10", "9"]
for veh in env.virtual_data:
n += 1
x = [t[0] for t in env.virtual_data[veh] if t_l - 30 < t[0] < t_l]
y = [t[2] for t in env.virtual_data[veh] if t_l - 30 < t[0] < t_l]
if len(idx) > 0 and veh.split("_")[0] == idx[0]:
plt.plot(x, y, color[veh.split("_")[0]], lw=2, label=leg[veh.split("_")[0]])
plt.legend()
leg.pop(idx[0])
idx.pop(0)
else:
plt.plot(x, y, color[veh.split("_")[0]], lw=2)
# plt.legend()
plt.xlabel("时间 [s]")
plt.ylabel("距离冲突点距离 [m]")
plt.savefig("exp_result_imgs/velocity.png")
plt.close()
if choose_veh_visible:
choose_veh_info = [np.array(item) for item in env.choose_veh_info]
plt.figure(0)
color = ['r', 'g', 'b', 'y']
y_units = ['distance [m]', 'velocity [m/s]', 'accelerate speed [m/s^2]']
titles = ["The distance of the vehicle varies with the time",
"The velocity of the vehicle varies with the time",
"The accelerate spped of the vehicle varies with the time"]
for m in range(len(y_units)):
for n in range(4):
plt.plot(choose_veh_info[n][:, 0], choose_veh_info[n][:, m + 1], color[n])
plt.legend(["lane-0", "lane-1", "lane-2", "lane-3"])
plt.xlabel("time [s]")
plt.ylabel(y_units[m])
plt.title(titles[m], fontsize='small')
plt.savefig("exp_result_imgs/%s.png" % (y_units[m].split(" ")[0]), dpi=600)
plt.close()
print(
"vehicle number: %s; collisions occurred number: %s; collisions rate: %s, time_mean: %s, pT-m: %0.4f s jerks: %s" % (
env.id_seq, collisions_count, float(collisions_count) / env.id_seq, np.mean(time_total),
float(env.passed_veh_step_total) / (env.passed_veh + 0.0001) * env.deltaT, jerk_total / env.passed_veh))
sess.close()
def batch_test():
agent1_ddpg_test = MADDPG('agent1', actor_lr=args.actor_lr, critic_lr=args.critic_lr,
nb_other_aciton=args.o_agent_num, num_units=args.num_units)
saver = tf.train.Saver()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
sess.run(tf.global_variables_initializer())
model_path = os.path.join(args.save_dir, args.exp_name, "test_best.cptk")
if not os.path.exists(model_path + ".meta"):
model_path = tf.train.latest_checkpoint(os.path.join(args.save_dir, args.exp_name))
saver.restore(sess, model_path)
print("load cptk file from " + model_path)
dens = [1200, 1000, 900, 800, 600, 400, 200]
tw = open(args.exp_name + "_batch_test_result_12_v1.txt", "w")
for d in dens:
dens_f = "arvTimeNewVeh_new_%s_%s.mat" % (d, args.lane_num)
mat_path = os.path.join("./data/test", dens_f)
print(mat_path)
tw.write(mat_path + "\n")
data = scio.loadmat(mat_path) # 加载.mat数据
arrive_time = data["arvTimeNewVeh"]
env = TrafficInteraction(arrive_time, 150, args, show_col=False, virtual_l=not args.actual_lane,
lane_num=args.lane_num)
jerk_total = 0
collisions_count = 0
lock_total = 0
for i in range(36000):
for lane in range(args.lane_num):
for ind, veh in enumerate(env.veh_info[lane]):
o_n = veh["state"]
agent1_action = [[0]]
if veh["control"]:
agent1_action = get_agents_action(o_n[0], sess, agent1_ddpg_test,
noise_range=0) # 模型根据当前状态进行预测
env.step(lane, ind, agent1_action[0][0]) # 环境根据输入的动作返回下一时刻的状态和奖励
ids, state_next, reward, actions, collisions, estm_collisions, collisions_per_veh, jerks, lock = env.scene_update()
jerk_total += sum(jerks)
lock_total += lock
for k in range(len(actions)):
if collisions_per_veh[k][0] > 0:
collisions_count += 1
if i % 1000 == 0:
print("i: %s collisions_rate: %s reward std: %s reward mean: %s lock_num: %s" % (
i, float(collisions_count) / env.id_seq, np.std(reward), np.mean(reward), lock_total))
env.delete_vehicle()
result_txt = "vehicle number %s collisions occurred number %s collisions rate %s pT-m %0.4f s jerks %s " \
"lock_num %s" % (
env.id_seq, collisions_count, float(collisions_count) / env.id_seq,
float(env.passed_veh_step_total) / (env.passed_veh + 0.0001) * env.deltaT,
jerk_total / env.passed_veh,
lock_total)
print(result_txt)
tw.write(result_txt + "\n")
tw.close()
sess.close()
if __name__ == '__main__':
args = parse_args()
if not os.path.exists("result_imgs"):
os.makedirs("result_imgs")
if not os.path.exists("exp_result_imgs"):
os.makedirs("exp_result_imgs")
if not os.path.exists(os.path.join(args.save_dir, args.exp_name)):
os.makedirs(os.path.join(args.save_dir, args.exp_name))
if args.type == "train":
with open(os.path.join(args.save_dir, args.exp_name, "args.txt"), "w") as fw:
fw.write(str(args))
train()
else:
if args.batch_test:
batch_test()
else:
test()