-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtt.word_ladder.py
123 lines (106 loc) · 4.27 KB
/
tt.word_ladder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import cv2
import Levenshtein as Lev
import random
import numpy as np
import torch
from network_tro import ConTranModel
from load_data import IMG_HEIGHT, IMG_WIDTH, NUM_WRITERS, letter2index, tokens, num_tokens, OUTPUT_MAX_LEN, index2letter
from modules_tro import normalize
import os
folder = 'word_ladder'
img_base = '/home/lkang/datasets/iam_final_forms/words_from_forms/'
target_file = '/home/lkang/datasets/iam_final_forms/gan.iam.test.gt.filter27'
'''data preparation'''
data_dict = dict()
with open(target_file, 'r') as _f:
data = _f.readlines()
data = [i.split(' ')[0] for i in data]
data = [i.split(',') for i in data]
for wid, index in data:
if wid in data_dict.keys():
data_dict[wid].append(index)
else:
data_dict[wid] = [index]
if not os.path.exists(folder):
os.makedirs(folder)
gpu = torch.device('cuda')
def test_writer(wid, model_file):
def read_image(file_name, thresh=None):
url = img_base + file_name + '.png'
img = cv2.imread(url, 0)
if thresh:
#img[img>thresh] = 255
pass
rate = float(IMG_HEIGHT) / img.shape[0]
img = cv2.resize(img, (int(img.shape[1]*rate)+1, IMG_HEIGHT), interpolation=cv2.INTER_CUBIC) # INTER_AREA con error
img = img/255. # 0-255 -> 0-1
img = 1. - img
img_width = img.shape[-1]
if img_width > IMG_WIDTH:
outImg = img[:, :IMG_WIDTH]
img_width = IMG_WIDTH
else:
outImg = np.zeros((IMG_HEIGHT, IMG_WIDTH), dtype='float32')
outImg[:, :img_width] = img
outImg = outImg.astype('float32')
mean = 0.5
std = 0.5
outImgFinal = (outImg - mean) / std
return outImgFinal
def label_padding(labels, num_tokens):
new_label_len = []
ll = [letter2index[i] for i in labels]
new_label_len.append(len(ll)+2)
ll = np.array(ll) + num_tokens
ll = list(ll)
ll = [tokens['GO_TOKEN']] + ll + [tokens['END_TOKEN']]
num = OUTPUT_MAX_LEN - len(ll)
if not num == 0:
ll.extend([tokens['PAD_TOKEN']] * num) # replace PAD_TOKEN
return ll
'''data preparation'''
imgs = [read_image(i) for i in data_dict[wid]]
random.shuffle(imgs)
final_imgs = imgs[:50]
if len(final_imgs) < 50:
while len(final_imgs) < 50:
num_cp = 50 - len(final_imgs)
final_imgs = final_imgs + imgs[:num_cp]
imgs = torch.from_numpy(np.array(final_imgs)).unsqueeze(0).to(gpu) # 1,50,64,216
texts = ['three', 'threw', 'shrew', 'shred', 'sired', 'fired', 'fined', 'finer', 'fiver', 'fever', 'sever', 'seven']
labels = torch.from_numpy(np.array([np.array(label_padding(label, num_tokens)) for label in texts])).to(gpu)
'''model loading'''
model = ConTranModel(NUM_WRITERS, 0, True).to(gpu)
print('Loading ' + model_file)
model.load_state_dict(torch.load(model_file)) #load
model.eval()
num = 0
with torch.no_grad():
f_xs = model.gen.enc_image(imgs)
for label in labels:
label = label.unsqueeze(0)
f_xt, f_embed = model.gen.enc_text(label)
f_mix = model.gen.mix(f_xs, f_embed)
xg = model.gen.decode(f_mix, f_xt)
pred = model.rec(xg, label, img_width=torch.from_numpy(np.array([IMG_WIDTH])))
label = label.squeeze().cpu().numpy().tolist()
pred = torch.topk(pred, 1, dim=-1)[1].squeeze()
pred = pred.cpu().numpy().tolist()
for j in range(num_tokens):
label = list(filter(lambda x: x!=j, label))
pred = list(filter(lambda x: x!=j, pred))
label = ''.join([index2letter[c-num_tokens] for c in label])
pred = ''.join([index2letter[c-num_tokens] for c in pred])
ed_value = Lev.distance(pred, label)
if ed_value <= 100:
num += 1
xg = xg.cpu().numpy().squeeze()
xg = normalize(xg)
xg = 255 - xg
cv2.imwrite(folder+'/'+wid+'-'+str(num)+'.'+label+'-'+pred+'.png', xg)
if __name__ == '__main__':
with open(target_file, 'r') as _f:
data = _f.readlines()
wids = list(set([i.split(',')[0] for i in data]))
for wid in wids:
test_writer(wid, 'save_weights/<your best model>')