-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtestmodel.py
77 lines (53 loc) · 1.89 KB
/
testmodel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import pandas as pd
import math
from auxFonctions import AminoAcid
import fonctionsSupervisedLearning2 as fsl2
import fonctionsSupervisedLearning1 as fsl1
# import thundersvm as tsvm
import numpy as np
from sklearn import svm
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt
from sklearn.model_selection import ParameterGrid
import joblib
import fonctionskernel as fk
import time
# open model
model = joblib.load("data/models/best_svm_rbf.pkl")
# open data
data = pd.read_csv("data/df.csv")
data = fsl2.convert_df_to_vectors2(data).head(100)
X = data['P_Structure_vector']
# X = np.array(X)
# X = X.reshape(1,-1)
pos = data['Cleavage_Site']
# predict
def main():
start = time.time()
# find the cleavage for the whole dataset
predictions = [fsl1.find_cleavage2(x, model) for x in X]
# number of correct predictions
correct = 0
for i in range(len(predictions)):
if pos[i] in predictions[i]:
correct += 1
#average accuracy
accuracy = correct/len(predictions)
#average number of predictions:
avg_pred = sum([len(x) for x in predictions])/len(predictions)
#average distance to the real cleavage site, if pred is not empty
flat_list = [abs(p - pos[i]) for i, x in enumerate(predictions) if x for p in x]
avg_dist = sum(flat_list) / len(flat_list) if flat_list else 0
end = time.time()
with open("data/results_sliding_rbf.txt", "a") as f:
f.write(f"Accuracy: {accuracy}\n")
f.write(f"Average number of predictions: {avg_pred}\n")
f.write(f"Average distance to the real cleavage site: {avg_dist}\n")
f.write("model: best_svm_model_matrix\n")
f.write("data: df.csv\n")
f.write(f"Time: {end-start}\n")
f.write("\n")
if __name__ == "__main__":
main()