-
Notifications
You must be signed in to change notification settings - Fork 253
/
Copy pathmain.py
238 lines (197 loc) · 7.13 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import os
import gc
import datetime
import numpy as np
import pandas as pd
import cv2
from argparse import ArgumentParser
from copy import deepcopy
from tqdm import tqdm
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import TensorBoard, ModelCheckpoint, LambdaCallback
from keras import backend as K
from keras.utils import Sequence
from keras_tqdm import TQDMCallback
import matplotlib.pyplot as plt
from matplotlib.ticker import NullFormatter
from libs.pconv_model import PConvUnet
from libs.util import MaskGenerator
# Sample call
r"""
# Train on CelebaHQ
python main.py --name CelebHQ --train C:\Documents\Kaggle\celebaHQ-512\train\ --validation C:\Documents\Kaggle\celebaHQ-512\val\ --test C:\Documents\Kaggle\celebaHQ-512\test\ --checkpoint "C:\Users\Mathias Felix Gruber\Documents\GitHub\PConv-Keras\data\logs\imagenet_phase1_paperMasks\weights.35-0.70.h5"
"""
def parse_args():
parser = ArgumentParser(description='Training script for PConv inpainting')
parser.add_argument(
'-stage', '--stage',
type=str, default='train',
help='Which stage of training to run',
choices=['train', 'finetune']
)
parser.add_argument(
'-train', '--train',
type=str,
help='Folder with training images'
)
parser.add_argument(
'-validation', '--validation',
type=str,
help='Folder with validation images'
)
parser.add_argument(
'-test', '--test',
type=str,
help='Folder with testing images'
)
parser.add_argument(
'-name', '--name',
type=str, default='myDataset',
help='Dataset name, e.g. \'imagenet\''
)
parser.add_argument(
'-batch_size', '--batch_size',
type=int, default=4,
help='What batch-size should we use'
)
parser.add_argument(
'-test_path', '--test_path',
type=str, default='./data/test_samples/',
help='Where to output test images during training'
)
parser.add_argument(
'-weight_path', '--weight_path',
type=str, default='./data/logs/',
help='Where to output weights during training'
)
parser.add_argument(
'-log_path', '--log_path',
type=str, default='./data/logs/',
help='Where to output tensorboard logs during training'
)
parser.add_argument(
'-vgg_path', '--vgg_path',
type=str, default='./data/logs/pytorch_to_keras_vgg16.h5',
help='VGG16 weights trained on PyTorch with pixel scaling 1/255.'
)
parser.add_argument(
'-checkpoint', '--checkpoint',
type=str,
help='Previous weights to be loaded onto model'
)
return parser.parse_args()
class AugmentingDataGenerator(ImageDataGenerator):
"""Wrapper for ImageDataGenerator to return mask & image"""
def flow_from_directory(self, directory, mask_generator, *args, **kwargs):
generator = super().flow_from_directory(directory, class_mode=None, *args, **kwargs)
seed = None if 'seed' not in kwargs else kwargs['seed']
while True:
# Get augmentend image samples
ori = next(generator)
# Get masks for each image sample
mask = np.stack([
mask_generator.sample(seed)
for _ in range(ori.shape[0])], axis=0
)
# Apply masks to all image sample
masked = deepcopy(ori)
masked[mask==0] = 1
# Yield ([ori, masl], ori) training batches
# print(masked.shape, ori.shape)
gc.collect()
yield [masked, mask], ori
# Run script
if __name__ == '__main__':
# Parse command-line arguments
args = parse_args()
if args.stage == 'finetune' and not args.checkpoint:
raise AttributeError('If you are finetuning your model, you must supply a checkpoint file')
# Create training generator
train_datagen = AugmentingDataGenerator(
rotation_range=10,
width_shift_range=0.1,
height_shift_range=0.1,
rescale=1./255,
horizontal_flip=True
)
train_generator = train_datagen.flow_from_directory(
args.train,
MaskGenerator(512, 512, 3),
target_size=(512, 512),
batch_size=args.batch_size
)
# Create validation generator
val_datagen = AugmentingDataGenerator(rescale=1./255)
val_generator = val_datagen.flow_from_directory(
args.validation,
MaskGenerator(512, 512, 3),
target_size=(512, 512),
batch_size=args.batch_size,
classes=['val'],
seed=42
)
# Create testing generator
test_datagen = AugmentingDataGenerator(rescale=1./255)
test_generator = test_datagen.flow_from_directory(
args.test,
MaskGenerator(512, 512, 3),
target_size=(512, 512),
batch_size=args.batch_size,
seed=42
)
# Pick out an example to be send to test samples folder
test_data = next(test_generator)
(masked, mask), ori = test_data
def plot_callback(model, path):
"""Called at the end of each epoch, displaying our previous test images,
as well as their masked predictions and saving them to disk"""
# Get samples & Display them
pred_img = model.predict([masked, mask])
pred_time = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
# Clear current output and display test images
for i in range(len(ori)):
_, axes = plt.subplots(1, 3, figsize=(20, 5))
axes[0].imshow(masked[i,:,:,:])
axes[1].imshow(pred_img[i,:,:,:] * 1.)
axes[2].imshow(ori[i,:,:,:])
axes[0].set_title('Masked Image')
axes[1].set_title('Predicted Image')
axes[2].set_title('Original Image')
plt.savefig(os.path.join(path, '/img_{}_{}.png'.format(i, pred_time)))
plt.close()
# Load the model
if args.vgg_path:
model = PConvUnet(vgg_weights=args.vgg_path)
else:
model = PConvUnet()
# Loading of checkpoint
if args.checkpoint:
if args.stage == 'train':
model.load(args.checkpoint)
elif args.stage == 'finetune':
model.load(args.checkpoint, train_bn=False, lr=0.00005)
# Fit model
model.fit_generator(
train_generator,
steps_per_epoch=10000,
validation_data=val_generator,
validation_steps=1000,
epochs=100,
verbose=0,
callbacks=[
TensorBoard(
log_dir=os.path.join(args.log_path, args.name+'_phase1'),
write_graph=False
),
ModelCheckpoint(
os.path.join(args.log_path, args.name+'_phase1', 'weights.{epoch:02d}-{loss:.2f}.h5'),
monitor='val_loss',
save_best_only=True,
save_weights_only=True
),
LambdaCallback(
on_epoch_end=lambda epoch, logs: plot_callback(model, args.test_path)
),
TQDMCallback()
]
)