diff --git a/scripts/Processing_evaluation_distance.ipynb b/scripts/Processing_evaluation_distance.ipynb
index 6fc13a0..c0ba2c9 100644
--- a/scripts/Processing_evaluation_distance.ipynb
+++ b/scripts/Processing_evaluation_distance.ipynb
@@ -9,7 +9,7 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 5,
"metadata": {},
"outputs": [
{
@@ -46,10 +46,10 @@
" \n",
"
\n",
" \n",
- " 1 | \n",
- " 66.124 | \n",
- " 4.995741 | \n",
- " [2.0, 3.0, 1.0] | \n",
+ " 0 | \n",
+ " 69.964 | \n",
+ " NaN | \n",
+ " [3.0, 1.0, 2.0] | \n",
" 3 | \n",
" 0 | \n",
" 1 | \n",
@@ -58,9 +58,9 @@
" 5 | \n",
"
\n",
" \n",
- " 2 | \n",
- " 66.124 | \n",
- " 4.995741 | \n",
+ " 1 | \n",
+ " 69.964 | \n",
+ " NaN | \n",
" [2.0, 1.0, 3.0] | \n",
" 3 | \n",
" 0 | \n",
@@ -70,10 +70,10 @@
" 5 | \n",
"
\n",
" \n",
- " 4 | \n",
- " 66.140 | \n",
- " 4.995741 | \n",
- " [2.0, 3.0, 1.0] | \n",
+ " 3 | \n",
+ " 69.976 | \n",
+ " 4.99578 | \n",
+ " [3.0, 1.0, 2.0] | \n",
" 3 | \n",
" 0 | \n",
" 1 | \n",
@@ -82,9 +82,9 @@
" 5 | \n",
"
\n",
" \n",
- " 5 | \n",
- " 66.140 | \n",
- " 4.995741 | \n",
+ " 4 | \n",
+ " 69.976 | \n",
+ " 4.99578 | \n",
" [2.0, 1.0, 3.0] | \n",
" 3 | \n",
" 0 | \n",
@@ -94,10 +94,10 @@
" 5 | \n",
"
\n",
" \n",
- " 8 | \n",
- " 66.156 | \n",
- " 4.995741 | \n",
- " [2.0, 3.0, 1.0] | \n",
+ " 7 | \n",
+ " 69.996 | \n",
+ " 4.99578 | \n",
+ " [3.0, 1.0, 2.0] | \n",
" 3 | \n",
" 0 | \n",
" 1 | \n",
@@ -111,27 +111,26 @@
],
"text/plain": [
" timestamp distance_x value num_points error_count signal_3 \\\n",
- "1 66.124 4.995741 [2.0, 3.0, 1.0] 3 0 1 \n",
- "2 66.124 4.995741 [2.0, 1.0, 3.0] 3 0 1 \n",
- "4 66.140 4.995741 [2.0, 3.0, 1.0] 3 0 1 \n",
- "5 66.140 4.995741 [2.0, 1.0, 3.0] 3 0 1 \n",
- "8 66.156 4.995741 [2.0, 3.0, 1.0] 3 0 1 \n",
+ "0 69.964 NaN [3.0, 1.0, 2.0] 3 0 1 \n",
+ "1 69.964 NaN [2.0, 1.0, 3.0] 3 0 1 \n",
+ "3 69.976 4.99578 [3.0, 1.0, 2.0] 3 0 1 \n",
+ "4 69.976 4.99578 [2.0, 1.0, 3.0] 3 0 1 \n",
+ "7 69.996 4.99578 [3.0, 1.0, 2.0] 3 0 1 \n",
"\n",
" signal_2 signal_1 nearest_distance \n",
+ "0 1 1 5 \n",
"1 1 1 5 \n",
- "2 1 1 5 \n",
+ "3 1 1 5 \n",
"4 1 1 5 \n",
- "5 1 1 5 \n",
- "8 1 1 5 "
+ "7 1 1 5 "
]
},
- "execution_count": 3,
+ "execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "#Loading the data\n",
"import pandas as pd\n",
"import os\n",
"import numpy as np\n",
@@ -139,7 +138,7 @@
"import ast\n",
"\n",
"\n",
- "input_csv_path = os.path.expanduser('~/Desktop/MRS_Master_Project/rosbags/simulation/raw_csv/static_otsu_adaptive_experiment_v3.csv')\n",
+ "input_csv_path = os.path.expanduser('~/Desktop/MRS_Master_Project/rosbags/simulation/raw_csv/static_otsu_adaptive_heading_experiment_v3.csv')\n",
"data = pd.read_csv(input_csv_path)\n",
"\n",
"#Ensure that the 'value' column is a list\n",
@@ -209,6 +208,212 @@
"\n"
]
},
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Processing of multiple UAVs\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " timestamp | \n",
+ " distance_x | \n",
+ " value | \n",
+ " num_points | \n",
+ " error_count | \n",
+ " signal_3 | \n",
+ " signal_2 | \n",
+ " signal_1 | \n",
+ " nearest_distance | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 | \n",
+ " 145.308 | \n",
+ " 8.070875 | \n",
+ " [9.0, 11.0] | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 8 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 145.316 | \n",
+ " 8.070875 | \n",
+ " [1.0, 3.0, 5.0, 4.0, 7.0] | \n",
+ " 5 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 8 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 145.328 | \n",
+ " 8.070875 | \n",
+ " [9.0, 11.0] | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 8 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 145.336 | \n",
+ " 8.070875 | \n",
+ " [1.0, 3.0, 5.0, 4.0, 7.0] | \n",
+ " 5 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 8 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 145.344 | \n",
+ " 8.070875 | \n",
+ " [9.0, 11.0] | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 8 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " timestamp distance_x value num_points error_count \\\n",
+ "1 145.308 8.070875 [9.0, 11.0] 2 2 \n",
+ "3 145.316 8.070875 [1.0, 3.0, 5.0, 4.0, 7.0] 5 3 \n",
+ "5 145.328 8.070875 [9.0, 11.0] 2 2 \n",
+ "6 145.336 8.070875 [1.0, 3.0, 5.0, 4.0, 7.0] 5 3 \n",
+ "8 145.344 8.070875 [9.0, 11.0] 2 2 \n",
+ "\n",
+ " signal_3 signal_2 signal_1 nearest_distance \n",
+ "1 0 0 0 8 \n",
+ "3 1 0 1 8 \n",
+ "5 0 0 0 8 \n",
+ "6 1 0 1 8 \n",
+ "8 0 0 0 8 "
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "import pandas as pd\n",
+ "import os\n",
+ "import numpy as np\n",
+ "\n",
+ "import ast\n",
+ "\n",
+ "\n",
+ "input_csv_path = os.path.expanduser('~/Desktop/MRS_Master_Project/rosbags/simulation/raw_csv/otsu_multiple_topics.csv')\n",
+ "data = pd.read_csv(input_csv_path)\n",
+ "\n",
+ "#Ensure that the 'value' column is a list\n",
+ "data['value'] = data['value'].apply(lambda x: ast.literal_eval(x) if isinstance(x, str) else x)\n",
+ "\n",
+ "#Relative distance to the target (TX is at 10m from origin, and we recorded the position of the RX)\n",
+ "data['distance_x'] = 10.0 - data['distance_x']\n",
+ "\n",
+ "data['distance_x'] = data['distance_x'].fillna(method='ffill')\n",
+ "\n",
+ "# Remove missing 'value'\n",
+ "data = data.dropna(subset=['value'])\n",
+ "\n",
+ "#Add a column for the number of points in each row\n",
+ "data['num_points'] = data['value'].apply(len)\n",
+ "\n",
+ "\n",
+ "def calculate_error_rate(values):\n",
+ " error_count = 0\n",
+ " for value in values:\n",
+ " if value not in [1.0, 2.0, 3.0]:\n",
+ " #return sum(1 for value in values if value not in [1.0, 2.0, 3.0])\n",
+ " error_count += 1\n",
+ " \n",
+ " return error_count\n",
+ "\n",
+ "data['error_count'] = data['value'].apply(calculate_error_rate)\n",
+ "\n",
+ "#Function to check occurrence of signal 3\n",
+ "def check_signal_3(values):\n",
+ " return 1 if 3.0 in values else 0\n",
+ "\n",
+ "#Function to check occurrence of signal 2\n",
+ "def check_signal_2(values):\n",
+ " return 1 if 2.0 in values else 0\n",
+ "\n",
+ "#Function to check occurrence of signal 1\n",
+ "def check_signal_1(values):\n",
+ " return 1 if 1.0 in values else 0\n",
+ "\n",
+ "\n",
+ "# Check if the signal 3 is still present\n",
+ "data['signal_3'] = data['value'].apply(check_signal_3)\n",
+ "\n",
+ "# Check if the signal 2 is still present\n",
+ "data['signal_2'] = data['value'].apply(check_signal_2)\n",
+ "\n",
+ "# Check if the signal 1 is still present\n",
+ "data['signal_1'] = data['value'].apply(check_signal_1)\n",
+ "\n",
+ "\n",
+ "specified_distances = np.array([5, 8, 11, 14, 17, 20])\n",
+ "\n",
+ "# Assigning each data point to the nearest specified distance\n",
+ "data['nearest_distance'] = specified_distances[np.abs(specified_distances[:, np.newaxis] - data['distance_x'].values).argmin(axis=0)]\n",
+ "\n",
+ "# Save the cleaned data to a new CSV file\n",
+ "cleaned_file_path = os.path.expanduser('~/Desktop/MRS_Master_Project/rosbags/simulation/processed_csv/otsu_multiple_topics_processed.csv')\n",
+ "\n",
+ "data.to_csv(cleaned_file_path, index=False)\n",
+ "\n",
+ "cleaned_file_path \n",
+ "\n",
+ "\n",
+ "data.head()"
+ ]
+ },
{
"cell_type": "markdown",
"metadata": {},
@@ -2051,40 +2256,31 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- "(signal_1 0.574797\n",
- " signal_2 0.575422\n",
- " signal_3 0.974616\n",
+ "(signal_1 0.592739\n",
+ " signal_2 0.592739\n",
+ " signal_3 1.000000\n",
" dtype: float64,\n",
- " signal_1 0.384776\n",
- " signal_2 0.391810\n",
- " signal_3 0.952295\n",
+ " signal_1 0.384183\n",
+ " signal_2 0.392098\n",
+ " signal_3 1.000000\n",
" dtype: float64,\n",
" signal_1 signal_2 signal_3 distance_x\n",
- " 0 0 0 0 9.815947\n",
- " 1 0 0 1 12.834247\n",
- " 2 0 1 0 9.495722\n",
- " 3 0 1 1 8.595722\n",
- " 4 1 0 1 9.495722\n",
- " 5 1 1 0 5.995722\n",
- " 6 1 1 1 7.160633,\n",
+ " 0 0 0 1 12.836584\n",
+ " 1 1 1 1 7.199130,\n",
" signal_1 signal_2 signal_3 distance_x\n",
- " 0 0 0 0 10.693489\n",
- " 1 0 0 1 11.738423\n",
- " 2 0 1 0 9.870712\n",
- " 3 0 1 1 7.995712\n",
- " 4 1 0 0 4.995712\n",
- " 5 1 0 1 7.898938\n",
- " 6 1 1 0 4.995712\n",
- " 7 1 1 1 6.105690)"
+ " 0 0 0 1 11.701038\n",
+ " 1 0 1 1 7.995741\n",
+ " 2 1 0 1 7.995741\n",
+ " 3 1 1 1 6.037778)"
]
},
- "execution_count": 10,
+ "execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
@@ -2093,9 +2289,9 @@
"import pandas as pd\n",
"\n",
"# Load the datasets\n",
- "adaptive_df = pd.read_csv('~/Desktop/MRS_Master_Project/rosbags/simulation/kl_static_adaptive_heading_0.4_processed.csv')\n",
+ "adaptive_df = pd.read_csv('~/Desktop/MRS_Master_Project/rosbags/simulation/processed_csv/static_otsu_adaptive_heading_exp_v3_processed.csv')\n",
"\n",
- "standard_df = pd.read_csv('~/Desktop/MRS_Master_Project/rosbags/simulation/static_standard_heading_0.4_processed.csv')\n",
+ "standard_df = pd.read_csv('~/Desktop/MRS_Master_Project/rosbags/simulation/processed_csv/static_static_heading_exp_v3_processed.csv')\n",
"\n",
"# Drop rows with NaN distances if any\n",
"adaptive_df_clean = adaptive_df.dropna(subset=['distance_x'])\n",
@@ -2112,6 +2308,303 @@
"overall_presence_adaptive, overall_presence_standard, average_distance_adaptive, average_distance_standard"
]
},
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " rounded_distance | \n",
+ " signal_1 | \n",
+ " signal_2 | \n",
+ " signal_3 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 5.0 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 8.0 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 11.0 | \n",
+ " 0.370627 | \n",
+ " 0.370627 | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 14.0 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " rounded_distance signal_1 signal_2 signal_3\n",
+ "0 5.0 1.000000 1.000000 1.0\n",
+ "1 8.0 1.000000 1.000000 1.0\n",
+ "2 11.0 0.370627 0.370627 1.0\n",
+ "3 14.0 0.000000 0.000000 1.0"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#grouping by distance and calculating the signal presence rate\n",
+ "\n",
+ "# Round the distances to the nearest integer for easier comparison\n",
+ "adaptive_df['rounded_distance'] = adaptive_df['distance_x'].round()\n",
+ "\n",
+ "# Group by the rounded distance and calculate the mean for signal presence columns\n",
+ "kl_signal_presence_by_distance = adaptive_df.groupby('rounded_distance')[['signal_1', 'signal_2', 'signal_3']].mean().reset_index()\n",
+ "\n",
+ "kl_signal_presence_by_distance.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " rounded_distance | \n",
+ " signal_1 | \n",
+ " signal_2 | \n",
+ " signal_3 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 5.0 | \n",
+ " 1.000000 | \n",
+ " 1.00000 | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 8.0 | \n",
+ " 0.536091 | \n",
+ " 0.56774 | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 11.0 | \n",
+ " 0.000000 | \n",
+ " 0.00000 | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 14.0 | \n",
+ " 0.000000 | \n",
+ " 0.00000 | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " rounded_distance signal_1 signal_2 signal_3\n",
+ "0 5.0 1.000000 1.00000 1.0\n",
+ "1 8.0 0.536091 0.56774 1.0\n",
+ "2 11.0 0.000000 0.00000 1.0\n",
+ "3 14.0 0.000000 0.00000 1.0"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "standard_df['rounded_distance'] = standard_df['distance_x'].round()\n",
+ "\n",
+ "standard_signal_presence_by_distance = standard_df.groupby('rounded_distance')[['signal_1', 'signal_2', 'signal_3']].mean().reset_index()\n",
+ "\n",
+ "standard_signal_presence_by_distance.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAVYCAYAAABLRCIfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd3xO5/8/8NednUgiSMwsJCJBEhE7EWqkpWZpFUXTZdUqpWZabdFSvq1ZfIzyUa1VSovW3kXkU2LVipqhxMi6k/v9+yO/c5rbfd/JHQ4xXs/Hw6PNme9z7uuM9znnui6diAiIiIiIiIjoodgUdQBERERERETPAiZXREREREREGmByRUREREREpAEmV0RERERERBpgckVERERERKQBJldEREREREQaYHJFRERERESkASZXREREREREGmByRUREREREpAEmV0R5nDt3DjqdDv7+/kUdyhMhMTERL7/8MkqWLAkbGxvodDps3br1ka2vcePGj3wdj9LTHj8V7Fk7R8THx0On0yE+Pr6oQ3lmzZ49G2FhYXBycnqmyg4VzrRp06DT6dCvX7+iDgUA0LFjR+h0OixfvryoQ3nmMLl6yu3atQvvvvsuqlatiuLFi8PR0REVKlTAyy+/jLlz5+LevXtFHSI9pa5du4YmTZpg3bp1cHFxQf369dGwYUMUL17cqvmTk5MxePBgVK9eHcWKFYOzszN8fX3RoEEDDB06FBs2bHjEW/B0WLBgAXQ6ndE/GxsblCxZEtHR0ZgxYways7OLOkx6AvXs2dOk7Li4uKBcuXKoV68e+vXrh99//x0i8shjWb16NeLj43H48OFHvq6nyZw5c9CrVy8cOXIEVapUQcOGDVG7du0iiUVJpAv772l4WBQZGanG26NHj3ynXbJkidH2Xb9+/aHXn5WVhfj4eHz++ecPvSx6+tkVdQD0YNLS0vDmm2/ihx9+AAA4OTmhcuXKcHZ2xsWLF7Fu3TqsW7cOY8aMwYYNG1CjRo0ijvjpYG9vj6CgIFSoUKGoQyly33//PW7evIm2bdti5cqVsLGx/lnM5s2b0a5dO9y5cwe2trbw8fFB6dKl8c8//2Dv3r3Ys2cP5s+fb3JR8/X1RVBQEFxcXLTenCeeo6MjIiMjAQA5OTk4c+YMdu7ciZ07d2L58uX45Zdf4OjoWMRR0pOodOnSCAwMBABkZ2fj1q1bOHToEPbt24fp06cjLCwM3333ndnrgKenJ4KCguDp6flQMaxevRoLFy6Ev78/wsPDH2pZz5KZM2cCAH744Qe88sorRRqLr68vGjZsaDL8zz//xO3bt+Hj4wNfX1+T8dY+UHtSrFy5EjNnzrR4HVm8eLHm68zKysLHH3+MYsWKYcSIEZovn54uTK6eQnq9Hi1atMCuXbtQtmxZTJw4EZ06dYKzs7M6TVJSEr7++mvMmzcPp0+fZnJlpQoVKuD48eNFHcYTQdkPsbGxhUqsbt++jddeew137txBq1atMH36dPj5+anjb926hZ9++kl9MJDXokWLHj7wp1TZsmWxc+dOo2HLli3DG2+8gS1btmDKlCkYPnx4EUVHT7KXXnoJCxYsMBqWnp6OX375BfHx8UhMTES9evWwc+dO1KxZ02i6fv36PTGfKT2LlPNoy5YtizgSIC4uDnFxcSbDGzdujG3btiEuLu6p/zw0KCgIJ06cwKpVq9C1a1eT8VevXsWmTZvU6YgeBX4W+BT6+OOPsWvXLpQpUwZ79uxB9+7djRIrAAgJCcGsWbOwZcsWlC5duogipadZeno6AJiUrYKsX78e169fh7u7O3744QejxAoAPDw80KNHD6xbt06zWJ9Vr732Gnr37g0AWLp0aRFHQ08TZ2dndOjQAfv27UPTpk2RlpaGV199FTk5OUUd2nPlQc+j9GC6desGwPLbqaVLlyInJwdvvPHG4wyLnjNMrp4yqamp+PrrrwEAU6dOLbBibFRUFBo0aGAyfN26dXjxxRfh6ekJR0dHVKxYEX369MGFCxfMLsff3x86nQ7nzp3Dtm3b0KxZM3h4eKBkyZJo3749Tp06pU67Zs0aREdHw93dHSVKlMDrr7+OS5cumSxz69at0Ol0aNy4MfR6PT7++GNUqVIFTk5OqFChAvr27Yt//vnHbDx79+7Fhx9+iMjISJQuXRqOjo7w8fHBG2+8gaNHj5qdJ2/F7ZSUFPTr1w/+/v6wt7dHz549AeRfWf38+fN47733UKlSJTg6OsLNzQ2VKlVC+/bt8f3335td5+7du9GhQweUKVMGDg4O8Pb2Rvfu3XHs2DGz0+dtEOH48ePo1KkTPD094ezsjFq1apl922MNEcHixYsRExMDDw8PODs7o2rVqhg2bJjJPlb2k/Ik/M0331S/TW/cuHGB6zpz5gwAoEqVKoX+vC+/BiGysrLw+eefIygoSC0jvXr1QkpKisVK+XmHp6amYuDAgfD19YWjoyMCAgIwbtw4s/WZ0tPTsXTpUnTu3BlBQUFwdXWFq6srwsPD8emnnz7WuoyNGjUCAKNjLO+xk52djS+++AI1atSAi4uLSdnNzs7GrFmzEBUVBQ8PDzg5OaFq1aoYNWoUbt++bXada9euRWxsLDw9PWFvbw8vLy+Ehobi/ffft1h2N2zYgDZt2qBMmTJwdHSEt7c33nzzTZw+fdpk2vuPs8WLFyMyMhIuLi4oWbIkOnXqpJYjc9LS0jBp0iTUq1cPHh4ecHFxQWBgIN544w1s27bNZHoRwffff4/mzZujVKlScHR0RKVKldC/f39cuXLF4noKIiL45ptv1H1funRpvPHGG0hOTjaa7sSJE9DpdPD09ERWVpbF5dWoUQM6nU7TBw/Ozs5YvHgxHB0d8ddff+HHH380Gp9fgxbWlAPlt1y4cCEA4/PF/cs9cuQIxo4di/r166NcuXJwcHBAuXLl0KFDB+zevdts/EqdxJ49eyIzMxPx8fEICAiAk5MTfHx8MHjw4HyPx4sXL2Lw4MEICQlBsWLFULx4cdSoUQNDhgwxOqYUaWlpmDhxIiIjI+Hu7g4XFxeEh4fjyy+/RGZmZkG7W6VcMxV598n9bxkf5nq8ZcsWvPTSS/D09Hyk9aOaNm0KnU6HzZs3Gw1PT0+Ho6MjdDqd+iAoL0uNJhgMBsybN0+tx+vs7IyQkBCMGjUKqampDxxn9erVERYWhk2bNuHq1asm47/77jvY2Njg9ddfL3BZa9euRatWrdR7DF9fX7z77rs4f/680XRDhgyBm5sbAODevXsmddbM1elKT0/HiBEj1PsJf39/DB8+HBkZGRbj2bp1K9q0aQMvLy81nri4OPz1118W57l9+zaGDBkCX19ftfrIRx99pCb95mRlZWHSpEmoVasWXF1d1br8UVFR+OSTT1iX3xpCT5UlS5YIAPHy8hK9Xv9Ayxg+fLgAEADi7e0ttWrVEhcXFwEgJUqUkD/++MNkHj8/PwEgX331ldja2krp0qUlIiJCihUrJgCkXLlycvnyZfnqq6/U5YaFhYmjo6MAkKCgIElPTzda5pYtWwSANGrUSFq1aiUAJDAwUMLDw8XOzk4ASEBAgFy9etUknsqVKwsAKVWqlFSvXl3CwsKkePHiAkCcnZ1ly5YtJvOMHTtWAEifPn3E19dXbG1tJTQ0VEJDQyUuLk5ERM6ePSsAxM/Pz2jes2fPiqenpwAQFxcXqVGjhoSHh0vJkiUFgISFhZmsb8aMGaLT6QSAlC5dWiIjI8XDw0MAiJOTk/z8888m88TExAgAmTRpkri6uoqbm5vUqlVLvLy81N/su+++y+/nNWEwGKRLly7q/JUqVZKIiAhxcHBQt/X06dPq9PPmzZOGDRtK6dKl1d+kYcOG0rBhQ+nXr1+B6/vmm28EgBQvXlxu3rxZqFiV7b//99Pr9RIbG6tuQ1BQkFpO/P395f333xcAMnbsWKP5lN984MCBEhwcLHZ2dhIeHi7+/v7qst5++22TOHbs2CEAxM7OTry9vSUyMlICAwPVchkRESFpaWlWx5+f+fPnmy1zih9//FEt1wpzx07lypWlVq1aUq1aNXW61NRUadSokQAQGxsb8fPzk+rVq6u/fXBwsMnxpfx+AKRs2bLqtjs5OQkAmTJlikmMAwYMUOcpXbq01KxZU9zd3QWAuLu7y65du4ymz3ucKecjPz8/o3NGuXLlJCUlxWRd58+fl+DgYHV9gYGBEhERoR6LMTExRtNnZWVJp06d1OnLly8vYWFh6jmvXLlycuLEiYJ+JrOx9+7dWwCIr6+v1KpVS91HXl5ecvz4caP56tevLwBkxYoVZpd74MABdZ9nZ2dbFUuPHj0EgPTo0aPAaV977TUBIN26dTMarhwj9x871paDy5cvWzxfNGzYUObNm6cus2nTpgJAPDw8JDg4WCIiItTzqq2trSxZssQkbuX46NKlizRq1Eh0Op1Uq1ZNgoKCxMbGRgBI8+bNzW7zb7/9ppZDe3t7CQ0NlerVq6u//f3b/Pfff0tISIh67AcEBKjnDQASFRVl9rg3p2PHjtKwYUN1H+bdJ+vXr1ene5jr8eeffy42NjZSokQJqV27tnh7exfq3KNQzlv374+84uPjBYCMGTPGaPjvv/+uxh8cHGwyn1Iu8p5n9Hq9tGvXzugYrlmzprqfAwMD5cKFC4Xahlq1agkAWbVqlUyaNMnsuSopKUktL+np6er67z/PGAwGeeedd9TxZcqUkfDwcHF1dVV/l4MHD6rTT5s2TT2+bWxsjH7rhg0byq1bt0Tk32MqLi5O6tSpIzY2NlKjRg0JCAhQ7xXatWtndvu+/PJLk+NRKdvFihWT33//3WSemzdvSmhoqBpXaGioVK1aVS2Pbdu2FQDy448/Gm37iy++KABEp9NJYGCgREZGire3t9ja2goAOXXqVKF+m+cRk6unTN++ffM9AAuydu1a9cKxePFidXhqaqq0b99eAIi/v7/JBUQ5mdvb28vkyZMlJydHRHIP3nr16gkAadWqlbi4uBhdIJOTk6VSpUoCQGbMmGG0TOUG0c7OTtzd3WXz5s3quPPnz0tYWJgAkI4dO5psx8KFC40SApHcE/bcuXPFzs5OKlWqpMaoUG4ibG1tpX79+kYnbyXxs5Rc9evXT72JuXPnjtG4Y8eOyezZs42GJSQkqBeKL774Qo0lIyND+vTpoyYfly5dMppPucjZ29tLv3791LgMBoMMGzZMvTm09uZL5N8Tupubm2zcuFEdrtwUAZC6deuazKfcuM2fP9/qdYmInDhxQr3pqVWrlixfvly9uBTEUnKiXFhKlixpdKOenJwsNWvWFHt7+3yTK3t7e2nUqJFcvHhRHbdmzRr1YnHs2DGj+c6dOyc//PCDyW99+fJl6dixowCQ+Ph4q+PPT0HJVf/+/QWA1KhRQx2mHDvKg47du3er4/I+xOjcubMAkKZNmxodL//884906NDB5PjS6/VSokQJsbOzk1WrVhnFodfrZe3atbJt2zaj4bNmzRIAUrFiRaPtzs7Olk8//VS9acwbl3KcKcd+3pvNy5cvqzcEw4YNM1pXdna2ehMVGRkpSUlJRuMTEhJMzjPKzWvNmjUlISFBHZ6WlqYei5GRkWKtvLHb29vL0qVL1XHXr1+XZs2aCQCpU6eOGAwGddycOXMEgLRp08bscpUHBEOGDLE6lsIkV8p5ICgoyGi4ueTqQcqBNeeLH3/8Uf73v/8ZDTMYDLJ69WpxdXUVd3d3uX37ttF45fiwt7eXkJAQo0R4z5496g3mL7/8YjTf+fPn1Qdu3bt3lxs3bqjjcnJy5Oeff5Y1a9YYDWvQoIEAkM6dO8uVK1fUcRcuXJDo6OhC/z4iot4Qm/Ow12NbW1v5+OOP1QetBoNBMjIyChWfiHXJlXLOuf/hxZgxYwSAVKhQwSSJUpKZ+5Ou8ePHq+fz7du3q8MvXLggkZGRAkBeeOGFQm1D3uTq0qVLYmtrKxEREUbTfPTRRwJAFi1alG9ypSRnQUFBRtebrKwsGTFihAC5D37zPuC+c+eOmuhYohyD9vb2UrNmTTlz5ow6buvWreLs7CwAZMeOHUbz7dq1S2xsbESn08m0adPU80paWpr07NlTfaCTt4yLiJogVqlSxei42bdvn3h5eanXzbzJ1datWwXIfVh3fxL1zz//yMyZM80+8CZjTK6eMsrTnkGDBj3Q/MrN9IABA0zG3bt3T32KmPdpo8i/J/O2bduazLdhwwb1JGVuucrN1/03FcrJGsh9I3a/xMRE9enJ/YlUfrp16yYATJ6WKzcRjo6ORjfZeVlKrpS3JomJiVbF0LVrV4v7y2AwSLVq1QSAjB492miccpELCwszSQ6zsrKkbNmyAkAOHTpkVRwGg0F8fHzMPsUTyX1Sq7zFuP/J14MmVyIin332mfrbKr9hUFCQ9OzZU77//nuLNwDmkpOcnBz1wp33BkRx6tQpNUmylFw5OzubfRKqJBjmyp8laWlp4uDgIIGBgVbFX5D8kqvvv/9evQCOGzdOHZ732LH0JkQ5fvz8/ExuWEVyj3cfHx/R6XRy7tw5EclNbJRExBqZmZlStmxZsbW1tVgmX3nlFfWGRqEcZwBk8uTJJvOsWbNGAEhoaKjR8B9++EGA3Ldj169fLzC+a9euiaOjo7i7u5v9/XNycqR27doCwOgmLz95Y+/fv7/J+KtXr6pvd/I+MLp9+7YUK1ZM7O3t5dq1a0bzZGVlqefeI0eOWBWHSOGSq9WrVwuQ+9Q9L3PJVWHLQd5YHuR8ISIyatQoAWDy9ko5PnQ6ndm3OIMHDzb7WyiJc9OmTY2SXEuUMle7dm2zX4VcunRJXF1dxdXV1eq3VyL5J1cPez1u3bq11XHkx5rkKj09XRwcHMTJycno/B0TEyMODg7yxRdfmNyoz5w5UwBIr1691GFZWVnqlxhz5swxWc+pU6fUh3P79u2zehvyJlciIs2bNxcAcvToURHJvRb6+vqKi4uL3Llzx2Jyde/ePSlRooQ4ODiYPLxRKPcDK1euVIcVJrmytbVV48rr3XffFQAyYsQIo+HKG6auXbuazJOdnS0VK1YUADJx4kR1+LVr19Rrx/0PQkREFi1apG5/3t9MeQh0/70JFQ7rXD1l7ty5AwAoVqxYoee9e/cu9uzZAwB4//33Tca7uLjgnXfeAQBs3LjR7DLeeustk2F5m901N15pncpSHQoHBwe8/fbbJsNDQ0MRFRUFETEbz/HjxzF27Fh06NABjRs3RlRUFKKiotQ6F4mJiWbX16xZM5QvX97sOEt8fHwAAMuXL7eqzxglXnP7WafToX///kbT3S8uLs6khT57e3uEhYUBsLwv73fs2DFcuHABTk5O6m+bV4UKFdTmgS3F8iBGjBiBzZs3o2XLlnBwcICI4MSJE1iwYAE6d+6MKlWqWF03ICkpCRcvXkSxYsXQqVMnk/EBAQGIjo7OdxkvvvgivL29TYYr/c2Y258GgwE//fQT+vbti5deegnR0dGIiopC8+bNodPpcOrUKaSlpVm1Dda4cuWKWobr16+PsmXLonPnztDr9WjQoAE++OADk3mKFy+Otm3bml3eqlWrAACvvvqqWh8gLxcXFzRr1gwigh07dgCA+i3/yZMnLR4/ee3ZswdXrlxBRESESSt0ijZt2gCA2bpQgPlzhqXf5aeffgKQe3yUKlWqwPjWr1+PzMxMxMbGmv39bWxs8PLLL+cbX3769u1rMqx06dLo2LEjABj15ebm5oaOHTtCr9fjv//9r9E869atw/Xr1xEZGYlq1aoVOg5rKNcM5RqSn8KWg8JITk7GhAkT8Oqrr+KFF15Qy/yyZcsAWD5vh4eHq10V5FVQWRk6dKhR3SdLVq5cCSC37zA7O9OGlMuVK4fatWvj7t27OHjwYIHLK4gW1+Pu3bs/dBzWcnJyQp06dZCRkYH9+/cDADIzM7Fv3z7UqVMHL774IgDj42j79u0A/q03CgAJCQlISUlB8eLFzTYqERAQgFatWgF4uGuSsmylYYvt27cjOTkZ7du3h6urq8X5tmzZgps3b6Jhw4YIDg42O01B57SCNGjQACEhISbDzZVlg8GA33//HYD5cmJra6u29pl3f23ZsgV6vR4hISFG+1/RuXNnlCxZ0mS4cq+zYcOGh6r79rxjU+xPmbyVJgvrr7/+gsFgUCtzm6Nc2E+ePGl2fOXKlU2GeXl5WTX+7t27Zpfp7e1t9uYPAIKDg7Fz506TeMaPH49Ro0bBYDCYnQ+AxcYwLJ0w89O3b18sXLgQ48aNw6JFi/Diiy8iOjoaTZo0MUnUbt26hZSUFAAwewIFHmw/A1BbfrS0L++nLN/X19diQl5QLA+qSZMmaNKkCdLT03HgwAHs27cP69evx9atW5GcnIyWLVvi0KFDqFq1ar7LUSqdV61aFQ4ODmanCQ0NzTdZK+z+vHXrFlq2bKne/Fhy8+ZNzfrkyszMxK5duwDkJuBubm6oV68eXnvtNfTp08fstgcGBsLW1tbs8v78808AuUmWpcYClIrZFy9eBJB7oe7fvz++/PJLREREoGHDhmjSpImaWDo5OZldx7lz5xAVFWV2Hbdu3TJaR16enp5m+9Cx9LsojSjUq1fP7Lrup8S3d+9ei/Epld7NxZcfe3t7BAQEmB2nnGPuP6bi4uKwcOFCLFy4EAMGDFCHK41BKA3rPArKvnR3dy9w2sKWA2stXLgQvXr1yrfSvqXzdmGO4Tt37qi/Z2HLysyZM02SX4Xyexa2rJijxfX4Qa5lD6NRo0bYuXMntm3bhujoaOzfvx8ZGRmIiYlB9erVUapUKbPJVUxMjDpM2ZbKlStb7LevWrVqWLt27UNdkzp06IDevXtjyZIl+Oyzz/Ddd98B+Lc1QUuUcnDs2DGL5wyljD5oOShMWb506ZL6d2HuJ5T/t1RG7O3tUblyZZPj7YUXXkBoaCj2798Pb29vtGjRAo0aNUJMTAz7rysEJldPGaVz27NnzxZ6XuUA9fLysvgkr0yZMgAsP900dyOZd1n5jbf0xie/puLNxbN9+3aMGDECtra2GD9+PNq0aQM/Pz+4uLhAp9Nh1KhR+Oyzz6DX680u80He+oWHh2P79u0YO3YsNm/ejNmzZ2P27NnQ6XRo3rw5pk6dqp7E8p4YLW1bQfvZUozK2yxr3p7ljaWw+1hLzs7OiI6ORnR0NIYMGYKdO3fixRdfxL179zB58mTMmTMn3/mVBwmWEvCCxgGF35+DBw/Gnj17EBQUhM8//xz16tWDp6enmuB4e3vj4sWLFsvYg/Dz88O5c+cKNU9+ZVl56vjXX3/l25oUAKOWoyZMmIAKFSpg+vTp2LFjh/pWy93dHX369EF8fLx6U6SsIyUlRX2gYM06CorfUr9qSuuGHh4e+a5LocR34cIFiy2v5RdffkqVKmUxTkvHVKNGjRAYGIiEhAT8+eefqFGjBq5fv45169bBwcHBqhbMHpTSgqG1XXMUphxY4/Tp03jnnXeg1+vxwQcfoFu3bqhcuTJcXV2h0+kwd+5cdbw5hTmG87aCaW0HuEpZOXLkSIHTFrasmKPF9fhBrmUPIyYmBp9//jm2bduGUaNGqYlUTEwMdDodoqKisGbNGty4cQM3b97ExYsXERAQYPQA8nFdk4oVK4Z27dphyZIl2LhxI5YvX46yZcuiefPm+c6nlIMrV64U2JLog5aDwpRlZX85OTlZvM6Z2195y5clynx52dvb47fffkN8fDyWLl2KlStXqm91K1eujE8//RSdO3e2uEzKxc8CnzJKs+q7d+8224R0fpRX4SkpKRZvzpWnuAXdrGopv5uya9euATCOZ8mSJQByP/cYPny42sSucoEq6CbqQdWrVw8bNmzAzZs38euvv2LYsGHw9vbGxo0b0bx5c/UJfd5PDpT47/e49rMSi6U4HmcsiqioKPTp0wcA1M9L8qNciPJ7W6dlYpidna02ef/TTz+hQ4cOKF++vJpYZWdnP1Tz3Y+L8tvPmTMHklu/1uK/vM1l29jYYMCAATh58iTOnj2LhQsXonPnzsjIyMCECROMPk9U1tG1a9cC16FFE9FKGVWONWv3wciRIwuM7/7msQty48YNi2/OzZ23FMrbKeVt1dKlS6HX69GmTRuzn+loRemguk6dOlZNX5hyYI0ffvgBer0enTt3xqRJkxAeHg43N7dHct7Ou9+t/bRJKSubNm0qsKxo8YbxSb0e56dBgwaws7PD7t27odfrsW3bNtjZ2an3JTExMepnxnkTr7we5zVJ+TTw3XffRWpqKl5//XWLb/rvj++9994rsBz8/PPPDxWfNZR4MjIyLF7nzO2vvOXLEku/gZeXF6ZPn47r16/jwIEDmDx5MqKionD69Gm8/vrr+OWXXx5oW54nTK6eMi1btoSrqyuuXbtm0m9EQQICAmBjY4PMzEyLdXaUPqKqVKny0LFa68KFCxZvnJXPgPLGozzdN9d/F2D5m32tuLq6IjY2FhMmTMDx48dRuXJlXLx4UT3heHh4qE+LkpKSzC7jce1nZfnJyckW93FR/ObKZzD59fmjUOI6fvy4xafayqccWkhJScG9e/dQsmRJBAUFmYw/cuTIU9ERq/IJiTVP4i3x9/dH9+7dsXTpUqxZswYA8J///EdNKrRYR2Eon7/s3bvXqukfZXx6vd5sH16A+fOWomfPnrC1tcWSJUuQnZ2tJnWP8pPAy5cvq7+fUp+lMAoqBwAKrNf0OM/b7u7uah27J6GsmPOkXo/z4+rqioiICKSlpWHv3r3Ys2cPIiMj1QdgSiK1detWs/WtgH+35fTp0xb7DdNqu5s1a4ayZcuqb20L+iQQePByYE29vgdRvnx5NVEqzP1E3uumOXq9vsAvGmxsbFCrVi0MHjwYO3bsUOt2zZ07t3Ab8RxicvWU8fDwUCs1Dhw4sMDPiHbt2qXWt3B1dVUvbN98843JtOnp6epBExsbq2HU+cvKysK8efNMhh85cgQ7duxQP71TKD3dm+sgcOPGjY88ucrLxcUFNWrUAACjjpKV/WduP8v/73g073SPSnBwMHx9fZGRkWH2hHjp0iWsWLFC01iuX79e4GeLSpkMDAwscHnBwcGoUKEC7t69a/aBwpdPbmIAACAASURBVJkzZ9RPlrSglK/bt2+b/ezjiy++0Gxdj1L79u0B5FbovnHjxkMvT6m7kp6ejps3bwIAoqOj4enpicTExEfWeWle7dq1A5B7Y2+pbk5erVq1goODA9avX2+2w9iHNWPGDJNhKSkpake9LVq0MBlfvnx5tGjRAleuXMHkyZNx6NAhlC1bVm0QQGvp6el44403kJmZiSpVqqgN2Dwoc+UA+Pe4sfSpVH7n7ePHj2Pt2rUPFdf9lLIyefJkq6bv0KEDAGD27Nn51gnTypN6PS6IkixNnjwZ9+7dM3ozFR4ejuLFi2Pbtm0W31zVrFkTXl5eSE1NVetB5XX69GmsX78ewMNvt62tLT788EM0bdoUr7/+OiIiIgqcp2nTpnB3d8fu3bvxxx9/WL0upR5iZmam1Z/tW8PGxgbNmjUDYL6c5OTkqOehvPurSZMmsLe3x9GjR9W31nktW7bMqnNoXsqxn/deh8xjcvUUio+PR/369XH16lXUr18f3333ncnF4OTJk+jbty8aN25s9Op32LBhAHJvCvJW2r1z5w66d++OlJQU+Pv7P9Zvau3s7DB27FijirB///232hJShw4djCqAKpVMJ0yYYFT37I8//kBcXNwDV7bOT+/evbFs2TKT1uG2b9+utuST98T9wQcfwM7ODj/99BMmT56sPuHNysrCgAEDcOTIERQvXtxsj/Za0ul0GDp0KABg7NixaqxA7k1O586dkZWVhXr16qFJkyaarHPx4sUIDw/HnDlzTG7qb926hTFjxqgtOL355psFLs/GxgYDBw4EAPTv39/oSfTff/+NV199VdOnhh4eHqhWrRqys7MxaNAg9e1aTk4OJk6ciGXLlllsWONJEhkZiVdffRU3btxA8+bNkZCQYDQ+JycHW7duRdeuXdUnyElJSXjvvffwxx9/GN0gZGZm4rPPPgOQWzdMaanPyckJn3zyCQCgU6dOWLVqlcmNxZEjRzBs2DC1sY6H0a5dO0RGRuLatWto2bIlTpw4YTQ+MTERM2fOVP8uX748Bg4cCL1ej9jYWJMEUESwf/9+9O7d2+oWOBV2dnaYMWOGmkgBuRXdu3XrhoyMDERGRlo8puLi4gAAo0aNApD7RL2gz5UKKz09HatWrULdunXx+++/o1ixYvjhhx+sWk9hywHw79vo7du3m725VM7bM2bMwOHDh9XhJ0+eRKdOnTQ/poYOHYrixYtj06ZNeOutt4wSQYPBgPXr1xt91tW+fXvUq1cPx48fR+vWrU2e6mdmZmLdunXqb6eFJ/F6XBAlWVLeYOZNnmxsbNCwYUMkJibi/Pnz8PPzg5+fn9H89vb2GDx4MIDc7c9743/x4kV06dIFOTk5aNq0qdp63sMYNGgQfvvtN4uNlNzP3d0do0aNgoigTZs2WLdunck0iYmJGDx4MA4dOqQOs7W1hZ+fH7KzszU51+U1dOhQ2NjY4L///S9mzpypHl/p6el47733cPr0aXh5eRm1vOrl5aXeQ73zzjtG5fnAgQMYMmQI7O3tTdY1d+5cTJgwweQz3atXr2L69OkAYFWS+tzToj13evzu3Lmj9h+D/9+PT/Xq1aV27dpqn0BAbuedf/75p9G8eXuE9/HxkcjISClWrJjaB8r+/ftN1qf0q3H27Fmz8SjLM8dS31FKXz2NGjWSVq1aqZ3d5e2pvVKlSnL58mWj+VJTU9WOiR0cHKRGjRoSFBQkACQkJETt98RSn0f59eVhKValQ2M7OzsJDg6WOnXqqPsEgHTr1s1kWTNmzFB7XS9TpozUrl1bPDw81L62fv75Z5N5Cuon6UH6kjEYDNKlSxc11oCAAImIiFD7t/L19TXbj9iD9lszdepUoz6uKlasKHXq1JHAwEB1nYD5zjgtbb9er5cWLVqo81atWlUtJ/7+/moHrJ988onRfAX95kofOvf3E7RmzRr1tytZsqRERkaqfc6MHj3a4vHwKDoRNsdSh573u3Pnjtrfi/Jb161bV2rUqKF2WAlA7eA3ISFBHebh4SERERFSs2ZNtTNWBwcHow5/FXnPKSVLlpTatWtLRESElCxZUh2et5NXS8dZXpbOKefPn1ePd+WcUatWLSlVqpTZfaLX69W+7wBI2bJlpU6dOhIWFiZubm7q8Ps7krYkb+y9e/dW/z8yMlLdp6VKlbLYR45Ibv9gSnlCIfu2yks5RkuXLi0NGzaUhg0bSr169SQoKEjt4waAhIeHm1wHFOaOkQcpB3/99Zd6fPv5+Ul0dLTExMSo5w+9Xq92OG9rayvBwcFSvXp10el0Uq5cObXD6fuPRUvHqCK/Y2HTpk3qb2xvby9hYWFSo0YN9Xp3/3nh0qVLUrNmTaNzZd26dSUkJETdtjJlyuT3k5jI79oo8miux4VlTT9Xips3b6r9UNna2kpqaqrR+IkTJ6rb0717d7PLyM7OVvvszHvdV8psQECA2X7p8nN/P1cFya8TYYPBoF5TAIinp6fUqVNHatasqV7DAdPOfj/88EO1rEVEREhMTIzExMTIrVu3ROTffq769u1rNialU+lWrVqZjPvyyy/V9ZYrV05q166tdqBdrFgxk34qRXI7/VX61LSxsZGwsDAJCQkRANKwYUO1/6y8/VyNGzfO6P6xTp06EhISov42FStWNLknI1N8c/WUcnV1xfLly7F9+3a89dZb8PHxwblz55CYmAgRQatWrTBv3jycPHkS1atXN5p3/PjxWLt2LZo3b467d+/if//7Hzw9PdGrVy8kJiZq8rSoMHQ6HVatWoX4+HgYDAYkJSXBy8sLvXv3xr59+1C2bFmj6d3d3bFz5050794d7u7uOHHiBLKystQW3h5F5d8pU6ZgwIABCA0NxfXr19Unr7GxsVizZg0WLVpkMk/v3r2xY8cOtGvXDgaDAYcPH4aLiwu6deuGQ4cOPVDdhweh0+mwePFiLFq0CNHR0bh27RqOHj0KPz8/DB06FIcOHbLYFPCD6NOnDzZv3oyhQ4eiQYMGyMnJweHDh3Hx4kX4+fmhe/fu2LFjB7788kurl2lnZ4e1a9fi008/RWBgIM6cOYMrV66gR48e2Ldvn9pqmVa/fevWrfHLL7+gQYMGSE9Px4kTJxAQEIDFixerb2qeBq6urvj111+xZMkSxMbGIi0tDYcOHcL169cRGhqKYcOGYf/+/erb3sDAQMyZMwedOnWCl5cXTp48iVOnTqFChQro1asXkpKS8NJLL5msZ/z48di1axe6dOmCYsWKITExEefOnYO3tzfi4uKwbt06NG3aVJNt8vX1xcGDBzF+/HhERETg0qVLOHbsGEqWLIkePXpg3LhxRtPb2dnhu+++w7p169RPxRISEnD58mVUqVIF/fr1w9atWx+ofsf06dPxf//3f3Bzc8ORI0dQrFgxdO3aFQcPHsy3mWwHBwd06dIFADTp2+ratWvYtWsXdu3ahcOHD+PWrVuIiIhA37598dtvvyEhIcHkOpCfBykHlStXxtq1axETE4ObN2+qTXYrn67b2dlhw4YNeP/991GmTBn89ddfuHXrFt566y0cPHhQbQlXS82aNcORI0fQr18/+Pn54fjx47hw4QIqV66MoUOHmvSzVK5cOezZswczZsxAo0aNcOPGDSQkJODOnTuoU6cOPv74Y2zZskXTGJ+063FBPDw8EBoaCiD3E7/7m/bP+ybLXP9KQO5bnhUrVmDOnDmoX78+Ll++jKSkJFSuXBkjR47EgQMHzPZL97jodDp8/fXX2LJlC1599VU4Ojri8OHDuHDhAvz9/fHuu+9iw4YNJs38f/LJJ/joo4/g7++PI0eOqJ9HatGq7JAhQ7B582a8/PLLyMrKwuHDh+Hu7o4333wTCQkJeOGFF0zmKVGiBHbt2oVBgwahfPnyOHbsGNLT0zFs2DBs2rTJbH9uXbt2xeeff44XXngBOp0OiYmJSElJQXh4OL744gskJiaa3JORKZ2Ihh+HEhXC1q1b0aRJE8TExDyW+hr07GrdujV+/vlnrFq1Sr2BJnqSde7cGcuWLcO0adPMdkZMRERPJ765IqKn2t9//41NmzbB1tbW6g5DiYrSjRs38NNPP8HR0fGR9m1FRESPH5MrInoqfPrppyYtvp04cQJt27ZFZmYm2rZty88V6KkQHx+PjIwMdO7c+ZH2bUVERI+f6QeXRERPoLlz52L06NHw9PSEv78/UlNT1WSrUqVK+Prrr4s4QiLLDh8+jIEDB+LSpUs4deoUnJ2dMXr06KIOi4iINMY3V0T0VBg9ejRiY2Ph6OiII0eO4OLFi6hWrZpaAfpRVIgn0sqtW7ewbds2JCcno3bt2li/fr1RFxNERPRsYIMWREREREREGuCbKyIiIiIiIg0wuSIiIiIiItIAkysiIiIiIiINMLkiIiIiIiLSAJMrIiIiIiIiDTC5IiIiIiIi0gCTKyIiIiIiIg0wuSIiIiIiItIAkysiIiIiIiINMLkiIiIiIiLSAJMrIiIiIiIiDTC5IiIiIiIi0gCTKyIiIiIiIg0wuSIiIiIiItIAkysiIiIiIiINMLkiIiIiIiLSAJMrIiIiIiIiDTC5IiIiIiIi0gCTKyIiIiIiIg0wuSIiIiIiItIAkysiIiIiIiINMLkiIiIiIiLSAJMrIiIiIiIiDTC5IiIiIiIi0gCTKyIiIiIiIg0wuSIiIiIiItIAkysiIiIiIiINMLkiIiIiIiLSAJMrIiIiIiIiDTC5IiIiIiIi0gCTKyIiIiIiIg0wuSIiIiIiItIAkysiIiIiIiINMLkiIiIiIiLSAJMrIiIiIiIiDTC5IiIiIiIi0gCTKyIiIiIiIg0wuSIiIiIiItIAkysiIiIiIiINMLkiIiIiIiLSAJMrIiIiIiIiDTC5IiIiIiIi0gCTKyIiIiIiIg0wuSIiIiIiItIAkysiIiIiIiINMLkiIiIiIiLSAJMrIiIiIiIiDTC5IiIiIiIi0gCTKyIiIiIiIg0wuSIiIiIiItIAkysiIiIiIiINMLkiIiIiIiLSAJMrIiIiIiIiDTC5IiIiIiIi0gCTKyIiIiIiIg0wuSIiIiIiItIAkysiIiIiIiINMLkiIiIiIiLSAJMrIiIiIiIiDTC5IiIiIiIi0gCTKyIiIiIiIg0wuSIiIiIiItIAkysiIiIiIiINMLkiIiIiIiLSAJMrIiIiIiIiDTC5IiIiIiIi0gCTKyIiIiIiIg0wuSIiIiIiItIAkysiIiIiIiINMLkiIiIiIiLSAJMrIiIiIiIiDTC5IiIiIiIi0gCTKyIiIiIiIg0wuSIiIiIiItIAkysiIiIiIiINMLkiIiIiIiLSAJMrIiIiIiIiDTC5IiIiIiIi0gCTKyIiIiIiIg0wuSIiIiIiItIAkysiIiIiIiINMLkiIiIiIiLSAJMrIiIiIiIiDTC5IiIiIiIi0gCTKyIiIiIiIg0wuSIiIiIiItIAkysiIiIiIiINMLkiIiIiIiLSAJMrIiIiIiIiDTC5IiIiIiIi0gCTKyIiIiIiIg0wuSIiIiIiItIAkysiIiIiIiINMLkiIiIiIiLSAJMrIiIiIiIiDTC5IiIiIiIi0gCTKyIiIiIiIg0wuSIiIiIiItIAkysiIiIiIiINMLkiIiIiIiLSAJMrIiIiIiIiDTC5IiIiIiIi0gCTKyIiIiIiIg0wuSIiIiIiItIAkysiIiIiIiINMLkiIiIiIiLSAJMrIiIiIiIiDTC5IiIiIiIi0gCTKyIiIiIiIg0wuSIiIiIiItIAkysiIiIiIiINMLkiIiIiIiLSAJMrIiIiIiIiDTC5IiIiIiIi0gCTKyIiIiIiIg0wuSIiIiIiItIAkysiIiIiIiINMLkiIiIiIiLSAJMrIiIiIiIiDTC5IiIiIiIi0gCTKyIiIiIiIg0wuSIiIiIiItIAkysiIiIiIiINMLkiIiIiIiLSAJMrIiIiIiIiDdgVdQBPIoPBgEuXLsHNzQ06na6owyEiIiIioiIiIrhz5w7Kly8PG5v8300xuTLj0qVL8PHxKeowiIiIiIjoCXHhwgV4e3vnOw2TKzPc3NwA5O5Ad3f3Io6GHpRer8fGjRvRokUL2NvbF3U49IxjeaPHjWWOHieWN3rcnqQyd/v2bfj4+Kg5Qn6YXJmhfAro7u7O5Oopptfr4eLiAnd39yI/KOnZx/JGjxvLHD1OLG/0uD2JZc6a6kJs0IKIiIiIiEgDTK6IiIiIiIg0wOSKiIiIiIhIA6xzRURERE80EUF2djZycnKKOpTnll6vh52dHTIyMvg70GPxuMucvb09bG1tH3o5TK6IiIjoiZWVlYXLly8jLS2tqEN5rokIypYtiwsXLrAPUHosHneZ0+l08Pb2hqur60Mth8kVERERPZEMBgPOnj0LW1tblC9fHg4ODryxLyIGgwF3796Fq6trgZ2oEmnhcZY5EUFKSgr+/vtvBAYGPtQbLCZXRERE9ETKysqCwWCAj48PXFxcijqc55rBYEBWVhacnJyYXNFj8bjLnJeXF86dOwe9Xv9QyRWPDiIiInqi8WaeiB41rd6KP/Fnq+3bt6N169YoX748dDodVq9eXeA827ZtQ61ateDk5IRKlSph1qxZjyFSIiIiIiJ6nj3xydW9e/cQFhaGadOmWTX92bNn0bJlS0RHRyMhIQEjRoxA//79sWLFikccKRERERERPc+e+OTqpZdewqeffooOHTpYNf2sWbPg6+uLqVOnIjg4GG+//Tbi4uIwadKkRxwpERERkfWs/SJHa/7+/pg6depjX+/D6NmzJ9q1a/dY1tW4cWMMHDjwsazrUXtU2xIfH4/w8HDNl/sseOYatNizZw9atGhhNCw2Nhbz5s2DXq+Hvb29yTyZmZnIzMxU/759+zaA3Pb19Xr9ow24ABMn2mDmTBukpQFubgAbSbKeiC0yMprDyckWOp0UdTj0jBOxhb19DOzscnDfKYjokVCuT0V9nXqU9Ho9RAQGgwEGg6GowymUa9euYcyYMfj1119x9epVlChRAqGhoRg7dizq168PALh48SJKlChRJNum7Fdzjh49irFjx+LQoUM4f/48vvrqK/Tv37/A+Qrjvffew3/+8x9899136Ny5s1XxarVuxdatW9G0aVPcuHEDHh4e6vDly5fD3t7+kf4ub775JhYtWoR3330XM2fONBrXt29fzJo1C927d8f8+fOtWp6lbQG0+83uXyaAR7qPlHU8ivjNMRgMEBGzDVoU5jz7zCVXV65cQZkyZYyGlSlTBtnZ2bh+/TrKlStnMs/48ePx8ccfmwzfuHFjkbdOdPBgCC5dCgQA3LpVpKE8hXQA2LoUPS46AB5o08aAt98+gpYtzxZ1QPSc2LRpU1GH8MjY2dmhbNmyuHv3LrKysoo6nEJp3749srOzMX36dPj5+SElJQXbtm3D33//rT7EdXFxMXnA+zgYDAZkZGSocdwvJSUFFSpUQKtWrTBy5EhkZGTgzp07AKD+92GkpaVh2bJleP/99zFnzhy0bNmywHn0ej2ys7MtxvygcQC525S30RQ7OzuIiKbrup9er0eFChXw/fffIz4+Hs7OzgCAjIwMLF26FN7e3tDr9VbHYGlbsrOzkZWVpfm2ZGZmIicn55HuI4UWZc4aWVlZSE9Px/bt25GdnW00rjD97D1zyRVg2tqHkvlaagXko48+wuDBg9W/b9++DR8fH7Ro0QLu7u6PLlAr1KgBVKuWg2nTbJCamht/q1YG9O1rQIkSRRraEy87Oxv79u1D3bp1YWf3TBZ1eoLo9dkYPToF27b54NtvQ6HTVcNXXxlg5mU5kSb0ej02bdqE5s2bm/0q41mQkZGBCxcuwNXVFU5OTgAAEaCo+hN2cbHuC5Jbt25h79692Lx5M2JiYtThTZo0MZrO1tYWK1asUD932717N/r164fjx4+jevXqGDFiBF555RUcPHgQ4eHh6tuJjRs34qOPPkJSUhLCw8Mxb948BAUFAQBOnz6NDz74APv27cO9e/cQHByMzz77DM2aNVPXa2NjAycnJ4v3OI0bN0bjxo0BAOPGjYOTkxPc3Nxw584duLm5PXSraqtWrUK1atUwduxYVKhQAf/88w/8/f3V8Tk5Ofjwww8xf/582NraIi4uDnZ2drCzs1Nj/vXXX/H555/jyJEjsLW1Rb169TB16lRUrlwZAHDu3DlUrlwZS5YswbRp03Do0CFUrlwZ33zzDRo3boxz586hdevWAKCuW3lT9MILLyAsLAxTpkzBiBEjsHXrVuzevdtoG8LDw9GuXTvEx8cDAObPn49Jkybh7Nmz8Pf3x/vvv4/evXtb3Af29vaoVasWzp49i99++w1du3YFAPz888/w9fVFxYoVYW9vr26viGDSpEmYPXs2Ll++jCpVqmDkyJHo2LFjvtui7LfPPvsM8+bNg4ODA9577z2MHTtWjSU5ORn9+/fH5s2bYWNjg9jYWHz99ddGLysmTpyIqVOnIi0tDZ06dYKXlxdsbW0f6X2yiGhW5qyRkZEBZ2dnNGrUSD3fKAqVRMpTBICsWrUq32mio6Olf//+RsNWrlwpdnZ2kpWVZdV6UlNTBYCkpqY+cKxau35d5J13RHIvKyIlSojMmiWSk1PUkT25srKyZPXq1Vb/7kQPIysrS1atWi2ffZYtOl3ucdqkSe6xS/QoPA/nuPT0dElKSpL09HR12N27/14LH/e/u3eti1uv14urq6sMHDhQMjIyLE6X977m9u3bUrJkSenWrZscPXpU1q9fL1WqVBEAkpCQICIiW7ZsEQBSt25d2bp1qxw9elSio6OlQYMG6jIPHz4ss2bNkv/9739y8uRJGTlypDg5Ocn58+fVafz8/GTKlClWbYsybU5Ojty8eVNyNLjxiI6OlmnTpomIyCuvvCJjxowxGj9x4kQpXry4LF++XJKSkuStt94SNzc3adu2rTrN8uXLZcWKFXLy5ElJSEiQ1q1bS40aNdT4zp49KwDE29tbXc7bb78tbm5ucv36dcnOzpYVK1YIADlx4oRcvnxZbt26JSIiMTExMmDAABER+fPPPwWA/PXXX+q6jxw5os4nIvLtt99KuXLlZMWKFXLmzBlZsWKFlCxZUhYsWGBxH/To0UPatm0rX331lTRt2lQd3rRpU5kyZYq0bdtWevTooQ4fMWKEVK1aVX799Vc5ffq0zJ8/XxwdHWXr1q0Fbou7u7vEx8fLyZMnZeHChaLT6WTjxo0iImIwGKRmzZoSFRUlBw4ckL1790pERITExMSo6162bJk4ODjInDlz5Pjx4zJy5Ehxc3OTsLAw637wB6RlmbOGufONojC5wTOXXH344YcSHBxsNKxXr15Sr149q9fzJCZXij17RMLD/z3Rz5xZ1BE9uZ6HGw96cuQtb2vWiLi65h6jlSqJHD1a1NHRs+h5OMc9rcmVSO7Nf4kSJcTJyUkaNGggH330kSQmJhpNk/e+ZubMmVKqVCmjbZ0zZ47Z5Oq3335Tp1m3bp0AMHtDqAgJCZFvvvlG/bsok6uTJ0+Kvb29pKSkiIjIqlWrxMfHx2i55cqVkwkTJqh/6/V68fb2Nkqu7nft2jUBIH/++aeI/JtcmVvOxIkTReTf/Xnz5k2jZeVNrkREQkND5ZNPPlH//uijj6R27drq3z4+PvLf//7XaBnjxo2T+vXrW4xXSa5SUlLE0dFRzp49K+fOnRMnJydJSUkxSq7u3r0rTk5Osnv3bqNlvPXWW/L6668XuC1RUVFGw2rXri3Dhg0TEZGNGzeKra2tJCcnq+OPHj0qAGT//v0iIlK/fn3p1auX0TLq1q3L5MqCJ761wLt37+Lw4cM4fPgwgNym1g8fPozk5GQAuZ/0de/eXZ2+V69eOH/+PAYPHoxjx47hP//5D+bNm4chQ4YUSfxaq1cP+OMP4P/+D4iIAHr2LOqIiOh+rVsDe/YA/v7AmTO5x+369UUdFdGzwcUFuHu3aP4Vphr2K6+8gkuXLmHNmjWIjY3F1q1bERERgQULFpid/sSJEwgNDTX6HKlOnTpmpw0NDVX/X6lLfu3aNQC5Xdh8+OGHCAkJgYeHB1xdXXH8+HH1vulRcXV1Vf/16tXL4nTz5s1DbGwsPD09AQAtW7bEvXv38NtvvwEAUlNTcfnyZbXRDyC3DlRkZKTRck6fPo0uXbqgUqVKcHd3R8WKFQHAZDvNLefYsWOF2rauXbtiyZIlAHI/VVu6dKn6GV9KSgouXLiAt956y2gffPrppzh9+nSBy/b09ESrVq2wcOFCzJ8/H61atVL3jSIpKQkZGRlo3ry50ToWLVpk1Trylhcgt8wo5eXYsWPw8fGBj4+POl4pO8p+OnbsmNF+BGDyN/3ria+IcuDAAaNvlJW6UT169MCCBQtw+fJlowOpYsWKWL9+PQYNGoTp06ejfPny+Prrr/HKK6889tgfFTs7oH9/oF8/QKmzmJ0NtGkDdOsGvP46WxUkKmrVqwP79wMdOwLbtwMvvwx88QXwwQc8Pokehk4HFCtW1FFYx8nJCc2bN0fz5s0xZswYvP322xg7dix6mnkyKiIW64zfL28dO2UepTW1oUOHYsOGDZg0aRICAgLg7OyMjh07PvIGQZSH4AAs1sPJycnBokWLcOXKFaO60Dk5OZg3b55Ja8/5ad26NXx8fDBnzhyUL18eBoMB1atXt2o7C1t/p0uXLhg+fDgOHTqE9PR0XLhwQW3hUNnvc+bMQd26dY3mu7/FOUvi4uLQr18/AMD06dNNxivrWLduHSpUqGA0ztHRscDl318nU6fTqcs0V+7yG04Fe+KTq8aNG1s8uQAw+wQoJiYGhw4deoRRPRnyNAaDRYuAX37J/TdvHjB9OlC1atHFRkSAlxewaRPQty8wdy4wdChw5AgwezZgxfWQiJ4xISEhFvu1qlq1KpYsWYLMzEz1hvnAgQOFXseOHTvQs2dPtG/fHkDuF0Dnzp17Oh/kxQAAIABJREFU4JitFRAQUOA069evx507d5CQkGCUeBw/fhxdu3bFjRs3UKpUKZQrVw579+5Fo0aNAOQ2UHXw4EFEREQAAG7cuIFjx45h9uzZiI6OBgDs3LnT7DrNLUdJZBwcHADkJnf58fb2RqNGjbBkyRKkp6ejWbNmamMPZcqUQYUKFXDmzBn1bVZhvfjii2pSGBsbazI+JCQEjo6OSE5ONmogJS9rt8XcspOTk3HhwgX17VVSUhJSU1MRHBwMAAgODsbevXuNvhTbu3dvodbzPHnikyuyTteuwOXLwKefAps3A6GhuTdyI0cW7jMGItKWgwPw7be5LX8OGgQsXAicOgWsXAnc12sEET0jbty4gU6dOiEuLg6hoaFwc3PDgQMH8MUXX6Bt27Zm5+nSpQtGjhyJd999F8OHD0dycjImTZoEoHBvWgICArBy5Uq0bt0aOp0Oo0ePLnQfQVlZWUhKSlL//+LFi+qbqYfpOHbevHlo1aoVwsLCjIZXq1YNAwcOxOLFizFgwAAMGDAAEyZMQGBgIIKDg/HVV1/hVp7+aEqUKIFSpUrh22+/Rbly5ZCcnIzhw4ebXef06dPV5UyZMgU3b95EXFwcAMDPzw86nQ4///wzWrZsCWdnZ7i6uppdTteuXREfH4+srCxMmTLFaFx8fDz69+8Pd3d3vPTSS8jMzMSBAwdw8+ZNo9aoLbG1tVU/wTP3tsvNzQ1DhgzBoEGDYDAYEBUVhdu3b2P37t1wdXVFjx49CrUteTVr1gyhoaHo2rUrpk6diuzsbPTp0wcxMTHqp5gDBgxAjx49EBkZiaioKCxZsgRHjx5FpUqVClz+8+iJr3NF1nF0zE2kkpKAVq0AvR74/HMgJARYu7aooyN6vul0uZ/y/vILULw4sHs3UKcOkJhY1JER0aPg6uqKunXrYsqUKWjUqBGqV6+O0aNH45133sG0adPMzuPu7o61a9fi8OHDCA8Px8iRIzFmzBgAMGkWOj9TpkxBiRIl0KBBA7Ru3RqxsbHqGx9rXbp0CTVr1kTNmjVx+fJlTJo0CbVq1VI7En4QV69exbp168xW09DpdOjQoQPmzZsHAPjggw/QvXt39OzZE/Xr14ebm5v6Jg7IbUr++++/x8GDB1G9enUMGjQIX375pdn1TpgwARMnTkRYWBh27NiBn376Sa3TVKFCBXz88ccYPnw4ypQpo77RMqdTp064ceMG0tLS1KbzFW+//Tbmzp2LBQsWoEaNGoiJicGCBQvUemDWcHd3z7dZ83HjxmHMmDEYP348goODERsbi7Vr16rrKMy25KXT6bB69WqUKFECjRo1QrNmzVCpUiUsW7ZMnea1117DmDFjMGzYMNSqVQvnz5/Pt5n5551O8vvm7jl1+/ZtFC9eHKmpqUXez9WDEAHWrMm9mUtOBho0AHbufP7qeej1eqxfvx4tW7Z8ZvuAoSeHteXtxIncBi9Oncp9q7x4MZDnnoHIas/DOS4jIwNnz55FxYoVC5VgPCuWLFmCN998E6mpqWons0XFYDDg9u3bcHd3N+qk9kl17tw5VKxYEQkJCQ/1to2KzuMuc/mdbwqTGzz5RwcVmk4HtG2b+xZr2DBg5sx/E6u0NOAp6+Se6JkSFATs2wc0b557PHbokPs5Lx9zEdGiRYuwc+dOnD17FqtXr8awYcPw6quvFnliRUTWY3L1DCtWDJgwIbf+lWLMGCAsDNiypejiInrelSiR2zS78oXN6NFAly5AenrRxkVERevKlSvo1q0bgoODMWjQIHTq1AnffvttUYdFRIXA5Oo5kpb2/9i787ioqjeO458BBATEJc0tcN/3BdcUNZW0lEzTstwtzazccsncxdIWaXPp566V5pqVWpiaW26JS4pamlGKuZXkCsL8/jiJoqigDHeA7/v14hX3zp17n2HO2Dz3nPMcmD8fDhyARo1M2fYTJ6yOSiRzcnMz69VNnWp+nz8f6teHY8esjkxErDJw4ECOHj2aMDxp4sSJeKkq1T0pXLgwdrtdQwIlzSm5ykS8vGDvXujVywwT/PRTM0Tpo48ghZU7RSSVvPACrF4NDzwAO3ZAQIBZH0tERETSHyVXmUzOnGYNrG3boHp1iI6Gl182lctSuGC5iKSSwEDzmSxXziypEBgIn39udVQiIiKSUkquMqnq1WHLFpg0yZSG/uUX818RsUbRoqZE++OPw+XLZg7W0KGQwuVpRERExEJKrjIxV1d48UVTGnrRIihQ4Ppja9eqeplIWvP1hWXLYOBAsz1unKkmeP68tXGJiIhI8ii5EvLmhaZNr29/950peBEYCD//bF1cIpmRqyuMHw9z5oC7O3z5JdStC7//bnVkIiIicjdKruQWx46Z4hcbNkCVKuYuuu6ci6StDh1g3Tpz82PPHlPoYuNGq6MSkdRks9lYtmxZml+3cOHChIaGpvl1rdCgQQP69OljdRipZt26ddhsNv755x+HnN+qNnmzBg0a0Ldv31Q/78iRIx1eQVLJldyiSxdT3KJVK7h6Fd5+G8qUgSVLNFRQJC3Vrg3bt5ubHKdOmR7lGTOsjkpEkuPkyZP06NEDf39/PDw8yJcvH0FBQfz4448Jx0RFRdGsWTMLo0zavn37aN26NYULF8Zms6VqIrZ27VoaNmxIrly58PLyokSJEnTq1ImrV68CMGvWLHLkyJHi894u6ViyZAljxoy553iPHDnCM888Q4ECBfD09OShhx4iODiYQ4cOAXD06FFsNhu7du2652ukJ507d8Zms9GzZ89bHuvVqxc2m43OnTsn+3yOThatoORKkuTvb5Kpr7+GIkXgzz+hdWvo0cPqyEQyFz8/04vcujXExkK3btC/v5ZPEHF2rVu3Zvfu3cyePZtDhw6xfPlyGjRowNmzZxOOyZcvHx4eHhZGmbSLFy9StGhR3nrrLfLly5dq5923bx/NmjUjICCA9evXs3fvXj788EOyZMlCvIOq9+TKlYts2bLd03NjYmJo0qQJ0dHRLFmyhIMHD7JgwQLKly/PuXPnUjnStBMTE3Nfz/fz82P+/PlcumHl+8uXL/P555/j7+9/v+Gle0qu5I4ee8zMu3rjDTP/wwlvsIlkeN7e8MUXMGKE2X7vPVNVMB3/v10kQ/vnn3/YuHEj48ePp2HDhhQqVIgaNWowZMgQHnvssYTjbh6CtXnzZipXroynpyfVq1dn2bJliXpFrt3l//7776levTpeXl7UqVOHgwcPJpzj8OHDBAcHkzdvXnx8fAgICGD16tUpij8gIIC3336bp59+OlWTv7CwMPLnz8+ECRMoX748xYoV49FHH2XatGm4u7uzbt06unTpwrlz57DZbNhsNkaOHAnAvHnzqF69OtmyZSNfvny0b9+ekydPAqb3qGHDhgDkzJkzUe/JzcMCr1y5wsCBA/Hz88PDw4MSJUowffr0JOPdv38/R44cYdKkSdSqVYtChQpRt25dQkJCCAgIAKBIkSIAVKlSBZvNRoMGDQDYvn07TZo0IXfu3GTPnp3AwEB27tyZ6Pw2m41p06bRqlWrhF685cuXJzpmxYoVlCxZkqxZs9KwYUOOHj2a6PEzZ87wzDPP8NBDD+Hl5UWFChX4/Ka1PBo0aEDv3r3p168fuXPnpkmTJgD88ssv1K9fH09PT8qWLUtYWNjd3kIAqlatir+/P0uWLEnYt2TJEvz8/KhSpUqiY+12OxMmTKBo0aJkzZqVSpUqsWjRIuDO7xtAfHw8w4cPJ3fu3OTLly+hLVwTGRlJcHAwPj4++Pr60rZtW/76669Ex7z11lvkzZuXbNmy0a1bNy5fvpys13g/lFzJXXl5wZgx8Ouv8MQT1/cvXmyKX4iI47m4wMiRJsnKmhVWrYJatcwyCiKZ0YULt/+5+fvTnY694eb7HY9NCR8fH3x8fFi2bBlXrlxJ1nP+/fdfWrRoQYUKFdi5cydjxoxh0KBBSR47dOhQ3n33XXbs2IGbmxtdu3ZNeOz8+fM0b96c1atXEx4eTlBQEC1atCAyMjJlL8IB8uXLR1RUFOvXr0/y8Tp16hAaGoqvry9RUVFERUUxYMAAwPS2jBkzht27d7Ns2TJ+++23hC/ifn5+LF68GICDBw8SFRXF+++/n+Q1OnbsyPz58/nggw+IiIhgypQp+Pj4JHlsnjx5cHFxYdGiRcTdZrjAtv9WfV+9ejVRUVEJCce///5Lp06d2LBhA1u2bKFEiRI0b96cf//9N9HzR40aRdu2bdmzZw/Nmzfn2WefTejd/OOPP3jyySdp3rw5u3btonv37gwePDjR8y9fvky1atX4+uuv+fnnn3nhhRfo0KEDW7duTXTc7NmzcXNzY9OmTUydOpX4+HiefPJJXF1d2bJlC1OmTLlte0tKly5dmDlzZsL2jBkzErXDa9544w1mzpzJ5MmT2bdvH3379uW5557jhx9+uOv7NmfOHLy9vfnxxx+ZMGECo0ePTkgA7XY7TzzxBGfPnuWHH34gLCyMw4cP065du4Tnf/HFF4wYMYKQkBB27NhB/vz5mTRpUrJf4z2zyy3OnTtnB+znzp2zOhSndeqU3Z4rl90Odnvbtnb7n39aHdGtYmJi7MuWLbPHxMRYHYpkAmnZ3n76yW4vWNB8/nLmtNtXr3b4JcUJZYZ/4y5dumTfv3+//dKlS7c8ZmYBJ/3TvHniY728bn9sYGDiY3PnTvq4lFq0aJE9Z86cdk9PT3udOnXsQ4YMse/evfum14B96dKldrvdbp88ebL9gQceSPRa//e//9kBe3h4uN1ut9vXrl1rB+yrb/jQf/PNN3Ygyb/RNWXLlrV/+OGHCduFChWyT5w4MVmv49qxcXFx9r///tseFxeXrOcl5erVq/bOnTvbAXu+fPnsTzzxhP3DDz9M9H1r5syZ9uzZs9/1XNu2bbMD9n///ddut1//2/z999+JjgsMDLS/+uqrdrvdbj948KAdsIeFhSU75o8++sju5eVlz5Ytm71hw4b20aNH2w8fPpzw+G+//ZboPbrTa8+WLZv9q6++StgH2N94442E7fPnz9ttNpt95cqVdrvdbh8yZIi9TJky9vj4+IRjBg0alOTrvFHz5s3t/fv3T9gODAy0V65cOdEx3377rd3V1dX+xx9/JOxbuXJlojaZlE6dOtmDg4Ptp06dsnt4eNh/++03+9GjR+2enp72U6dO2YODg+2dOnVKeD2enp72zZs3JzpHt27d7M8884zdbr/z+/bwww8nanMBAQH2QYMG2e12u/27776zu7q62iMjIxOes2/fPjtg37Ztm91ut9tr165t79mzZ6Lz1qxZ016pUqUkX9ud/r1JSW6gniu5Jx4eppqZi4u5k166NEycaApgiIhjVa1qCl3UrAl//w1BQWZBcBFxHq1bt+b48eMsX76coKAg1q1bR9WqVZk1a1aSxx88eJCKFSvi6emZsK9GjRpJHluxYsWE3/Pnzw+QMETuwoULDBw4kLJly5IjRw58fHw4cOCAw3uurvXW+fj4JFnsAMDV1ZWZM2fy559/MmHCBAoUKEBISAjlypUjKirqjucPDw8nODiYQoUKkS1btoThdyl5Xbt27cLV1ZXAwMBkP+ell17ixIkTzJs3j9q1a7Nw4ULKlSt31yF0J0+epGfPnpQsWZLs2bOTPXt2zp8/f0u8N76X3t7eZMuWLeG9jIiIoFatWthstoRjateunej5cXFxhISEULFiRR544AF8fHz47rvvbrlO9erVE21HRETg7+/PQw89dNtz30nu3Ll57LHHmD17NjNnzuSxxx4jd+7ciY7Zv38/ly9fpkmTJonax5w5czh8+PBdr1GhQoVE2/nz50/0t/Hz88PPzy/h8WttPiIiIuGYm19TSl7jvXJz+BUkQ8qWDUJDoXNnsxDxli3Qrx/MmgWTJ0OdOlZHKJKx5c9vSrU//zzMmwcvvWTmR77/PmTJYnV0Io53pyVCXF0Tb//3fSxJLjfdZr5pSst98fT0pEmTJjRp0oThw4fTvXt3RowYkWQ1NbvdnuhL9LV9Sclyw4f82nOuFYR47bXX+Pbbb3nnnXcoXrw4WbNmpU2bNvddxOBubqyW5+vre8djCxYsSIcOHejQoQNjx46lZMmSTJkyhVGjRiV5/IULF2jatClNmzZl3rx55MmTh8jISIKCglL0urJmzZrsY2+ULVs2WrZsScuWLRk7dixBQUGMHTs2Ye5SUjp37sypU6cIDQ2lUKFCeHh4ULt27VvizXLTP9g2my3hvbzd+3+jd999l4kTJxIaGkqFChXw9vamT58+t1zH29s70XZS5765/d1N165d6d27NwAff/zxLY9fex3ffPMNBQsWTPRYcuby3e1vk1S8t9ufltRzJfelcmXYtAn+9z/Ilcusx1OvXur+z0lEkubpaRYbfustsNnMjY2gIDhzxurIRBzP2/v2Pzd0/tz12Ju/b9/uuNRQtmxZLtxmAlfp0qXZs2dPojlaO3bsSPE1NmzYQOfOnWnVqhUVKlQgX758txRBcITixYsn/Dz44IPJfl7OnDnJnz9/wt/F3d39lvlNBw4c4PTp07z11lvUq1eP0qVLJ/RgXOPu7g5w27lRYHpC4uPj+eGHH5Id381sNhulS5dOFG9S192wYQOvvPIKzZs3p1y5cnh4eHD69OkUXats2bJs2bIl0b6btzds2EBwcDDPPfcclSpVomjRovySjMm4ZcuWJTIykuPHjyfsu3GZgOR49NFHiYmJISYmhqCgoCSv4eHhQWRkZKL2Ubx48YQep+S8b3eK/48//kjYt3//fs6dO0eZMmUAKFOmzF3/fo6g5Erum4sLdO8OBw+aMtE9ekDhwlZHJZI52GwwaBAsWwY+PrB2rRku+N+oCBGxwJkzZ2jUqBHz5s1jz549/PbbbyxcuJAJEyYQHByc5HPat29PfHw8L7zwAhEREQm9T5CyHoXixYuzZMkSdu3axe7duxPOmxIxMTHs2rWLXbt2ERMTw7Fjx9i1axdHjhxJ0XluNnXqVF588UW+++47Dh8+zL59+xg0aBD79u2jRYsWgFng+Pz583z//fecPn2aixcv4u/vj7u7Ox9++CFHjhxh+fLlt6xdVahQIWw2G19//TWnTp3ifBJdm4ULF6ZTp0507do1oSjGunXr+OKLL5KMd9euXQQHB7No0SL279/Pr7/+yvTp05kxY0bC+/jggw+SNWtWVq1axV9//ZVQor148eLMnTuXiIgItm7dyrPPPpvinrOePXty+PBh+vXrx8GDB/nss89uGVZavHhxwsLC2Lx5MxEREfTo0YMTJ07c9dyNGzemVKlSdOzYkd27d7NhwwaGDh2aovhcXV2JiIggIiIC15u7izE9fgMGDKBv377Mnj2bw4cPEx4ezscff8zs2bOB5L1vt4u/YsWKPPvss+zcuZNt27bRsWNHAgMDE4ZAvvrqq8yYMYMZM2Zw6NAhRowYwb59+1L0Gu+FkitJNblzw7Rp8NFH1/f98otZ+HT3buviEskMWraEzZvNjY3Dh00lwRUrrI5KJHPy8fGhZs2aTJw4kfr161O+fHmGDRvG888/z0c3/k/yBr6+vnz11Vfs2rWLypUrM3ToUIYPHw6QaB7W3UycOJGcOXNSp04dWrRoQVBQEFWrVk1R/MePH6dKlSpUqVKFqKgo3nnnHapVq8Yrr7ySovPcrEaNGpw/f56ePXtSrlw5AgMD2bJlC8uWLUuYB1WnTh169uxJu3btyJMnDxMmTCBPnjzMmjWLhQsXUrZsWd56662ExPOaggULMmrUKAYPHkzevHkThqvdbPLkybRp04ZevXpRunRpnn/++dv2Jj700EMULlyYUaNGUbNmTapWrcr777/PqFGjEhIRNzc3PvjgA6ZOnUqBAgUSkq4ZM2bw999/U6VKFTp06MArr7ySoh49AH9/fxYvXsxXX31FpUqVmDJlCuPGjUt0zLBhw6hatSpBQUE0aNCAfPny8cSNpZ1vw8XFhaVLl3LlyhVq1KhB9+7dCQkJSVF8YNrtnYaBjhkzhuHDh/Pmm29SpkwZgoKC+OqrrxJK2Cf3fbvZtWUMcubMSf369WncuDFFixZlwYIFCce0a9eO4cOHM2jQIKpVq8bvv//Oiy++mOLXmFI2e3IGdGYy0dHRZM+enXPnzt113LDc2ZNPwtKlpnfrlVdg1ChIqz9pbGwsK1asoHnz5reM2xVJbc7S3k6dgjZtYP1606v19ttmPqTFQ9DFAZylzTnS5cuX+e233yhSpEiKEoyM4tNPP01Y9+le5wullvj4eKKjo/H19cXl5olqIg6Q1m3uTv/epCQ30KdDHOqDD+CppyA+3hTAKF0aFiwwhW1FJPXlyQNhYWaort0OAwZA166QzKV2RMRCc+bMYePGjfz2228sW7aMQYMG0bZtW8sTKxFJPiVX4lAPPWRKta9aBcWLQ1QUPP20mXR/6JDV0YlkTO7u8MknpnKgi4up4tmoEdy0cL2IOJkTJ07w3HPPUaZMGfr27ctTTz3FJ598YnVYIpICSq4kTQQFwd69Zligh4e5s75okdVRiWRcNpsZirtyJWTPbuZj1aih+Y8izmzgwIEcPXo0YXjSxIkT8fLysjosEUkBJVeSZjw9Yfhw2LfPVBTs3//6Y/8V1xGRVNa0KWzdCiVKQGSkWYNu6VKroxIREcmYlFxJmitWDKZMMT1YALGx8PDDpviFgxeQF8mUSpUyCVbjxnDxovmsjR2ruY8iIiKpTcmVWG7zZrMmz9KlUKYMTJhgEi4RST05c5ohgtcqKQ8bBu3bw6VL1sYlkhwqbCwijpZa/84ouRLLBQZCeLjpvbp40SyIWrmyKSUtIqnHzc0UuZg61fw+fz7Urw/HjlkdmUjSrpWYv3jxosWRiEhGFxMTA5Dkgsgp4ZYawYjcrwoVTDI1Z44pHb1/v0m6OnaEyZNB83lFUs8LL0DJkmY9rB07ICAAli0zBS9EnImrqys5cuTg5MmTAHh5eWHTom2WiI+PJyYmhsuXL2udK0kTadnm4uPjOXXqFF5eXri53V96pORKnIbNBp06QYsW8PrrppT077+DlvcQSX0NGsC2bdCypSkyExgIM2bAM89YHZlIYvny5QNISLDEGna7nUuXLpE1a1YluJIm0rrNubi44O/vf9/XUnIlTidXLlPwoksXU0L6WhuPjoZffoFq1ayNTySjKFrUzHl89ln4+mszB2vfPhg92qyPJeIMbDYb+fPn58EHHyRWE3ItExsby/r166lfv37CcE0RR0rrNufu7p4qPWRKrsRp1ayZeHvYMPjwQ+jVy1Q6y5HDmrhEMhJfXzMk8PXXTTGZkBCTYM2dCz4+Vkcncp2rq+t9z4WQe+fq6srVq1fx9PRUciVpIr22Od2blHTBboe//zb//fhjU1p63jyVkhZJDa6uMH48zJ4N7u4m2apb1wzLFRERkeRTciXpgs1mil18/71JrE6ehA4doFEjU8ZdRO5fx46wbh3kzQt79phCFxs3Wh2ViIhI+qHkStKVRo3Ml75x40yhi3XroGJFWLjQ6shEMobatU2hi8qV4dQp85mbOdPqqERERNIHJVeS7ri7w5Ahplx7ixbg7W3W6hGR1OHvb3qsWrc2C3p37Qr9+0NcnNWRiYiIODclV5JuFS4My5ebnqy8ea/vHz8efvvNsrBEMgRvb/jiCxgxwmy/9x48/jicO2dtXCIiIs5MyZWke/7+13//+msYPBjKlYO33nIhNlZNXOReubjAyJGwYIEZhrtqFdSqBb/+anVkIiIizknfPCVDKV4cGjaES5dg+HBX+vRpwJo1WuxQ5H60bQsbNkDBgnDgANSoAWvWWB2ViIiI81FyJRlK6dKmouCnn0LevHaOHcvGo4+60b49REVZHZ1I+lWtGmzfbtaf+/tvaNoUJk2yOioRERHnouRKMhybDdq3h717r9K8+RFcXOx8/jk8+qjWxRK5H/nzmwqdzz5rilu89JJZ1Ds21urIREREnIOSK8mwcuSAF17Yy+bNVwkIgLFjTeIlIvfO0xPmzoU33zSfp8mTISgIzpyxOjIRERHrKbmSDK9qVdiyxZRtv2bqVOjRA86etS4ukfTKZjOFY5YtAx8fWLvWDBfUgt4iIpLZKbmSTMHlhpZ+/rxZJ+uTT6BUKbNAany8dbGJpFctW8LmzWZZhMOHTSXBlSutjkpERMQ6Sq4k0/HxMXfcy5WD06fNAqmBgbB3r9WRiaQ/FSrAtm1Qrx5ER5u1sN59V/MbRUQkc1JyJZlS/foQHg5vv20WS924EapUgQED4N9/rY5OJH3JkwdWr4bu3U0v8IAB5qbFlStWRyYiIpK2lFxJppUli/kSGBEBTz5pqp9NnAi//GJ1ZCLpj7u7GWobGmqG4c6aBY0awcmTVkcmIiKSdpRcSabn5weLF8OKFaaiYNWq1x87d866uETSG5sNXn3VfJayZzfzsQICYPduqyMTERFJG0quRP7TrJkpdHFNRIRJvEaNgsuXrYtLJL0JCoKtW6FECYiMhLp1YelSq6MSERFxvHSRXE2aNIkiRYrg6elJtWrV2LBhwx2P//TTT6lUqRJeXl7kz5+fLl26cEaLsEgKzZ1r5l+NHAnly8O331odkUj6UaqUSbAaN4YLF8zQ25AQFboQEZGMzemTqwULFtCnTx+GDh1KeHg49erVo1mzZkRGRiZ5/MaNG+nYsSPdunVj3759LFy4kO3bt9O9e/c0jlzSu5AQ+OILKFDAlJl+9FF46in480+rIxNJH3LmNKXZX37ZbL/xBrRvD5cuWRuXiIiIozh9cvXee+/RrVs3unfvTpkyZQgNDcXPz4/JkycnefyWLVsoXLgwr7zyCkWKFOHhhx+mR48e7NixI40jl/TOZjPJVEQE9O0Lrq6waBGUKQOTJlkdnUj64OYGH3xgFu52c4P58021zmPHrI5MREQk9blZHcDfQ25RAAAgAElEQVSdxMTE8NNPPzF48OBE+5s2bcrmzZuTfE6dOnUYOnQoK1asoFmzZpw8eZJFixbx2GOP3fY6V65c4coNNYOjo6MBiI2NJTY2NhVeiVjh2nt3v+9h1qwwfry54/7yy65s2eJCdHQcsbFaeViuS632llF16QJFi9po186VHTtsBATYWbw4jurVNU7wXqnNSVpSe5O05kxtLiUx2Ox25x0Bf/z4cQoWLMimTZuoU6dOwv5x48Yxe/ZsDh48mOTzFi1aRJcuXbh8+TJXr16lZcuWLFq0iCxZsiR5/MiRIxk1atQt+z/77DO8vLxS58VIhhAfD5s2FaR27eO4uZmPztGj2ciZ8wrZs8dYHJ2I8ztxwotx42oSGemLu3scvXuHU7++urFERMR5Xbx4kfbt23Pu3Dl8fX3veGy6SK42b95M7dq1E/aHhIQwd+5cDhw4cMtz9u/fT+PGjenbty9BQUFERUXx2muvERAQwPTp05O8TlI9V35+fpw+ffquf0BxXrGxsYSFhdGkSZPbJtb3KyYGqlVz4+RJCAmJo2tXOy5OP9hWHCEt2ltGER0NHTu6smKF+bAMHhzHyJHx+uykkNqcpCW1N0lrztTmoqOjyZ07d7KSK6ceFpg7d25cXV05ceJEov0nT54kb968ST7nzTffpG7durz22msAVKxYEW9vb+rVq8fYsWPJnz//Lc/x8PDAw8Pjlv1ZsmSx/M2U++fI9zEqCjw94e+/oVcvN2bPhsmToUoVh1xO0gH9u3F3DzwAy5fD66/DhAnw1luuHDjgyty54ONjdXTpj9qcpCW1N0lrztDmUnJ9p75P6O7uTrVq1QgLC0u0PywsLNEwwRtdvHgRl5tuf7q6ugLgxJ10kk75+8OOHRAaCtmymdLT1aubhVS1ALHI7bm6mrmMs2eDuzssW2bWw/r9d6sjExERuXdOnVwB9OvXj2nTpjFjxgwiIiLo27cvkZGR9OzZE4AhQ4bQsWPHhONbtGjBkiVLmDx5MkeOHGHTpk288sor1KhRgwIFClj1MiQDc3MzydSBA9CunZmX9cEHULo0/PGH1dGJOLeOHWHdOsibF/bsgYAA2LTJ6qhERETujVMPCwRo164dZ86cYfTo0URFRVG+fHlWrFhBoUKFAIiKikq05lXnzp35999/+eijj+jfvz85cuSgUaNGjB8/3qqXIJlEgQKmzHS3bvDSS1CoEDz0kNVRiTi/2rVh2zYIDoZdu6BhQ1O6vUsXqyMTERFJGadPrgB69epFr169knxs1qxZt+x7+eWXefnaqpUiaaxJE9i7F/75x6yVBWZO1kcfQf/+oAKUIrfy94eNG6FTJ1i8GLp2hZ9/NnOy/hvZLSIi4vScfligSHrk4WGGOV0zdCgMHw7lysHXX1sXl4gz8/aGL74wnxWA996DFi00f1FERNIPJVciaaBpU/Dzg6NHzZfFVq00cV8kKS4uMGoULFhgFvBeuRJq1YJff7U6MhERkbtTciWSBp54AiIiYOBAUwBj2TIoW9ZUS4vR2sMit2jbFjZsgIIFTbGYGjVgzRqroxIREbkzJVciacTb2yRTu3ZB/fpw8SIMHmzu0ovIrapVg+3bTWL199+mB3jyZKujEhERuT0lVyJprFw5U3p6zhwoUwb69rU6IhHnlT8//PADPPssxMVBr16mGmdsrNWRiYiI3ErJlYgFbDbo0MFUQ8ud2+yz2+G55+Djj82XSBExPD1h7lx4803z2Zk0CR59FM6etToyERGRxJRciVjI5YZP4OrV8Omn0Ls31KxphkOJiGGzmWG0y5aBj4+Zf1WjhpnLKCIi4iyUXIk4iUaNTK9V9uzw008mwerVy8w1ERGjZUvYvBkKF4bDh00lwZUrrY5KRETEUHIl4iRcXU0ydfCgGTJot5vJ+6VKmflZdrvVEYo4hwoVYNs2qFcPoqPh8cfNmlj6jIiIiNWUXIk4mbx5TTK1dq0peHHqFIweDVeuWB2ZiPPIk8cMpe3eHeLjoX9/6NZNnxMREbGWkisRJ9WggSnb/tZbZgK/p6fZf/UqnD9vaWgiTsHdHT75BEJDzfzFmTPhkUfg5EmrIxMRkcxKyZWIE3N3h0GDzPo+10yebBYgXrpUw6BEbDZ49VVYscLMV9y0CQICYPduqyMTEZHMSMmVSDoSHw/Tp8Mff8CTT5q5JkeOWB2ViPWCgmDrVihRAiIjoW5dU1lQREQkLSm5EklHXFxMpbShQyFLFnO3vlw5GDNGc01ESpUyCVbjxnDhArRqBSEh6uEVEZG0o+RKJJ3x8oKxY2HvXlO+/fJlGD7cVFDbssXq6ESslTOnKc3+8stm+403oH17uHTJ2rhERCRzUHIlkk6VKmWqpX32GeTLZ4YHenlZHZWI9dzc4IMPYMoU8/v8+VC/Phw/bnVkIiKS0Sm5EknHbDZ45hk4cAAWLYKKFa8/tmGDqSwokln16AFhYZArF+zYYQpdbN9udVQiIpKRKbkSyQCyZ4cnnri+/fPP0LAhVKtm5miJZFYNGpiEqmxZ03NVvz58/rnVUYmISEal5EokAzp6FHx9Yc8eUzXt+efhzBmroxKxRtGi8OOPprrm5ctmDtawYab6poiISGpSciWSAT3+OBw8CF27mu1p08wcrenT9YVSMidfX1OafeBAsz12LLRpowW5RUQkdSm5Esmg8uQxydSGDVC+vOm56t4dHntMpaklc3J1hfHjYfZss0D30qWmZ/f3362OTEREMgolVyIZ3MMPw86d8O674OMDjz5qCmGIZFYdO8K6dfDgg2bobEAAbNpkdVQiIpIRKLkSyQSyZIF+/UxVwZdeur5/7VpYsEA9WZL51K5tCl1UrgynTpkCMLNmWR2ViIikd0quRDKRggXNuj9gJva/8AI8/TQEBcGhQ9bGJpLW/P1h40Zo3RpiY6FLFxgwAOLirI5MRETSKyVXIpmUzQbPPQceHmYtoAoVYPhwuHTJ6shE0o63N3zxhWn7YIbPtmgB585ZG5eIiKRPSq5EMikPDxgxwqyJFRQEMTEwZowpfrFypdXRiaQdFxcYNcoMkc2a1bT/2rXh11+tjkxERNIbJVcimVzx4ubL5KJFZtjgkSPQvLlZF0gkM2nb1lTXLFgQIiKgZk1Ys8bqqEREJD1RciUi2Gxm3klEhJlzEhwMtWpZHZVI2qtWzRS6qFEDzp6Fpk1h8mSroxIRkfRCyZWIJMiWDd5+G5YsuV6u/fRpCAyE9eutjU0kreTPb0q1P/usKW7Rq5epshkba3VkIiLi7JRcicgtXG74l2HMGJNYBQZC585w8qRlYYmkmaxZYe5cePNNc6Nh0iSzRtzZs1ZHJiIizkzJlYjc0YgRpmS7zQazZ0OpUjBlispVS8Zns8HgwbB0qakquGaNGS4YEWF1ZCIi4qyUXInIHeXKBVOnwubNUKUK/PMPvPgi1KkDO3daHZ2I4wUHmwIvhQvD4cNmPqIqaoqISFKUXIlIstSqBdu2wQcfgK+v+f1//7M6KpG0UaGCafP16kF0NDz+OLz3HtjtVkcmIiLORMmViCSbmxu8/DIcOAA9ekBIyPXHoqP1RVMytjx5YPVq6NYN4uOhf3/z+5UrVkcmIiLOQsmViKRY/vxm3lWuXGbbboennoJHHtF8FMnY3N1Nj21oqCn8MnOmafcq9CIiIqDkSkRSwaFDpqLg2rVQqRK8/jpcvGh1VCKOYbPBq6/CihWQPTts2gQBAbBnj9WRiYiI1ZRcich9K1UK9u8381BiY0356rJlYflyqyMTcZygINiyBYoXh8hIU+Rl2TKroxIRESs5NLn69ddf+fbbb7l06RIAdk3IEMmwihQxydSyZeDvD7//bqqstWxpFiIWyYhKl4atW6FxY7hwAVq1gnHjNP9QRCSzckhydebMGRo3bkzJkiVp3rw5UVFRAHTv3p3+/fs74pIi4gRsNpNQ7d9v1gdyczNDBrNlszoyEcfJlcuUZn/5ZbM9dCg8+yz8d19RREQyEYckV3379sXNzY3IyEi8vLwS9rdr145Vq1Y54pIi4kS8vc3QwN27Yc4c8PAw+2NjzfwUkYzGzc0sUzBlivn9888hMBCOH7c6MhERSUsOSa6+++47xo8fz0MPPZRof4kSJfj9998dcUkRcUJly0KNGte3P/gAHn4YnnsOTpywLi4RR+nRA8LCTG/W9u2m0MX27VZHJSIiacUhydWFCxcS9Vhdc/r0aTyu3cIWkUzn5EkzdPDTT00RjI8+grg4q6MSSV0NGpiEqmxZ03NVvz7Mn291VCIikhYcklzVr1+fOXPmJGzbbDbi4+N5++23adiwoSMuKSLpwPjx5ktn9epm0eGXXzZ39rdutToykdRVtCj8+CM89hhcvgzPPAPDhpnFh0VEJONySHL19ttvM3XqVJo1a0ZMTAwDBw6kfPnyrF+/nvHjxzvikiKSTlSrZspXT54MOXJAeDjUrm2GDIpkJL6+8OWX8NprZnvsWGjTBs6ftzYuERFxHIckV2XLlmXPnj3UqFGDJk2acOHCBZ588knCw8MpVqyYIy4pIumIqyv07AkHDkDHjqYAQOPGVkclkvpcXWHCBJg9G9zdYelSM+9Q049FRDImN0ecNDIyEj8/P0aNGpXkY/7+/o64rIikM3nzmi+do0dDoULX90+aZOaplC9vXWwiqaljRyhRAp54wlTRrFEDliyBunWtjkxERFKTQ3quihQpwqlTp27Zf+bMGYoUKeKIS4pIOnZjYhUebuZiVa5shlNpCJVkFLVrmzmHlSub4i4NG8KsWVZHJSIiqckhyZXdbsdms92y//z583h6ejrikiKSQeTObe7ux8XBO+9AmTKweDHY7VZHJnL//P1h40Zo3dqs+9alCwwYoKqZIiIZRaoOC+zXrx9gqgMOGzYsUTn2uLg4tm7dSuXKlVPzkiKSwfj5mWRqxQro3Rt++80UAXj0UfjwQyhe3OoIRe6Ptzd88QWMGmWGxL77LkREwGefQfbsVkcnIiL3I1WTq/DwcMD0XO3duxd3d/eEx9zd3alUqRIDBgxIzUuKSAbVvDns2wdvvmlKuK9aBfXqwdGjoOXyJL1zcTHJVdmy0LmzuZlQuzYsX64bCCIi6VmqDgtcu3Yta9eupVOnTqxcuTJhe+3atXz77bdMnTqVEiVKpPi8kyZNokiRInh6elKtWjU2bNhwx+OvXLnC0KFDKVSoEB4eHhQrVowZM2bc68sSEYtkzWru7O/da6oJDhumxEoylnbtzDDBggVN71XNmrB2rdVRiYjIvXLInKuZM2fi6+ubKudasGABffr0YejQoYSHh1OvXj2aNWtGZGTkbZ/Ttm1bvv/+e6ZPn87Bgwf5/PPPKV26dKrEIyJpr2RJ+O47U779mm++gbZt4dgx6+ISSQ3VqplCFzVqwNmz0LQpTJlidVQiInIvHFKKHWD79u0sXLiQyMhIYmJiEj22ZMmSZJ/nvffeo1u3bnTv3h2A0NBQvv32WyZPnsybb755y/GrVq3ihx9+4MiRI+TKlQuAwoUL3/sLERGnYLOZHzCT//v0gV9/hZUrTe/Wyy+b9bJE0qP8+WHdOnj+efj0U3jxRdNjGxoKWbJYHZ2IiCSXQ3qu5s+fT926ddm/fz9Lly4lNjaW/fv3s2bNGrKnYLZuTEwMP/30E02bNk20v2nTpmzevDnJ5yxfvpzq1aszYcIEChYsSMmSJRkwYACXLl26r9ckIs7D1RUWLjRzVM6fh379zN3/TZusjkzk3mXNCnPnmnmGNptZ7+3RR01vloiIpA8Ouc87btw4Jk6cyEsvvUS2bNl4//33KVKkCD169CB//vzJPs/p06eJi4sjb968ifbnzZuXEydOJPmcI0eOsHHjRjw9PVm6dCmnT5+mV69enD179rbzrq5cucKVK1cStqOjowGIjY0lNjY22fGKc7n23uk9zJjKlTNzU2bPtjFkiCt79th4+GHo3DmecePiyJ07beNRe5PU0r8/lChho1MnV9assVGzpp3Fi69Spkzi49TmJC2pvUlac6Y2l5IYbHZ76q8e4+3tzb59+yhcuDC5c+dm7dq1VKhQgYiICBo1akRUVFSyznP8+HEKFizI5s2bqV27dsL+kJAQ5s6dy4EDB255TtOmTdmwYQMnTpxI6CVbsmQJbdq04cKFC2TNmvWW54wcOZJRo0bdsv+zzz5LVE5eRJxTdLQ7c+aUZfVqsxrx0KFbCAj4y+KoRO7P0aO+hITU5NQpL7y8YunffwfVqp20OiwRkUzn4sWLtG/fnnPnzt21roRDeq5y5crFv//+C0DBggX5+eefqVChAv/88w8XL15M9nly586Nq6vrLb1UJ0+evKU365r8+fNTsGDBRMMPy5Qpg91u588//0yyWuGQIUMS1ugC03Pl5+dH06ZNU60wh6S92NhYwsLCaNKkCVk0aSHDe/pp+PHHq3z5pY0RI6ol7I+OhrT4GKu9iSM89RS0axfPxo1ZCAmpxfjx8bzySjw2m9qcpC21N0lrztTmro1qSw6HJFf16tUjLCyMChUq0LZtW1599VXWrFlDWFgYjzzySLLP4+7uTrVq1QgLC6NVq1YJ+8PCwggODk7yOXXr1mXhwoWcP38eHx8fAA4dOoSLiwsPPfRQks/x8PDAI4n6zlmyZLH8zZT7p/cx86hf3/yAKwAnT5p1hJ57zhS9SIskS+1NUlOBAvD999CrF0yfbuO111yJiHBl0qTrhS7U5iQtqb1JWnOGNpeS6zukoMVHH33E008/DZheoQEDBvDXX3/x5JNPMn369BSdq1+/fkybNo0ZM2YQERFB3759iYyMpOd/NZmHDBlCx44dE45v3749DzzwAF26dGH//v2sX7+e1157ja5duyY5JFBEMq7Fi+HMGXj/fShdGubPh9QfCC3iWO7u8L//mcqBLi4wY4ZZ9+2kRgiKiDgdhw0LvMbFxYWBAwcycODAezpXu3btOHPmDKNHjyYqKory5cuzYsUKChUycyuioqISrXnl4+NDWFgYL7/8MtWrV+eBBx6gbdu2jB079v5elIikOy++CMWLw0svwS+/wDPPwPTp8PHHZu0skfTCZoNXXzU3Ca4tPFynjhv9+mnouoiIM3FIz9Xt7Ny5k8cffzzFz+vVqxdHjx7lypUr/PTTT9Q3434AmDVrFuvWrUt0fOnSpQkLC+PixYv88ccfvPvuu+q1EsmkmjSBPXvMsEAPD1i9GipUgJEj1Ysl6U9QEGzZYm4aREbaGDy4Hl9+abM6LBER+U+qJ1dhYWG89tprvP766xw5cgSAAwcO8MQTTxAQEMDVq1dT+5IiInfk6QnDhsG+fdCsGcTEmOGCNn0nlXSodGnYuhUaNYrn8mU3nnrKjXHjdLNARMQZpGpyNXv2bIKCgpg5cyZvvfUWtWrVYt68edSoUYOcOXOye/duVq1alZqXFBFJtmLF4JtvYOlSuHGk8JEjcMPoYhGnlysXfPVVHM2bm5uYQ4fCs8/CpUsWByYiksmlanI1ceJExo0bx+nTp5k/fz6nT59m4sSJhIeHM3PmTMqXL5+alxMRSTGbDZ54Aq6t1mC3Q7duUKYMTJhgerVE0oMsWeCFF/by8cdxuLnB559DYCAcP251ZCIimVeqJleHDx+mXbt2ALRp0wZXV1fee+89ihUrlpqXERFJNefOQXw8XLwIgwZBlSrwww9WRyWSfM8/H09YmOnN2r4dAgJgxw6roxIRyZxSNbm6cOEC3t7e5sQuLnh6euLn55ealxARSVU5csC6dTB7NuTJA/v3Q4MG0KkT/PWX1dGJJE+DBrBtm1nX7fhxqFfPLD0gIiJpK9VLsX/77bdk/2+8TXx8PN9//z0///xzomNatmyZ2pcVEblnNht07AgtWsDrr8PUqTBnDixfDmvWmN4sEWdXrBj8+CO0b2/mFj7zjCniMmqUWR9LREQcL9WTq06dOiXa7tGjR6Jtm81GXFxcal9WROS+5cwJkydDly5mjawrV0BTRSU98fWFL7+EIUPg7bdN4Zb9+83Ngv8GloiIiAOl6r2s+Pj4u/4osRIRZ1ejhhlitWqVKRoAptDFyJHwzz+WhiZyV66upjjLrFng7g5LlkDduvD771ZHJiKS8WmggIhIElxd4aGHrm+/+64ZXlWqFMydqzWFxPl16mTmEz74IOzebW4abN5sdVQiIhmbkisRkWSoU8eUaz950szPatjQDLcScWa1a5sKgpUrm7bbsKHp0RIREcdQciUikgyBgbBrF7z5JmTNasq1V6oEgwfDhQtWRydye/7+sHEjtG5thrd26QIDBoBG6YuIpD4lVyIiyeTubpKpiAgIDoarV2H8eFP8QsSZeXvDF1/A8OFm+913oWVLs86biIikHiVXIiIpVKgQLFtmSrWXLAlvvGF1RCJ35+Ji5g3Onw+enrBihRk2ePiw1ZGJiGQcDkuu/vnnH6ZNm8aQIUM4e/YsADt37uTYsWOOuqSISJpq0cL0YpUseX1fSIgLX3xhXUwid9OuHWzYAAUKmPZbowasXWt1VCIiGYNDkqs9e/ZQsmRJxo8fzzvvvMM//9UuXrp0KUOGDHHEJUVELHHj4qwHDuRk9GgX2rUzldqio62LS+ROqlc3hS5q1ICzZ6FpU5gyxeqoRETSP4ckV/369aNz58788ssveHp6Juxv1qwZ69evd8QlRUQsV7z4PwweHI+Li1m0tVIl2LTJ6qhEklaggCnV/uyzZv7giy9C794QG2t1ZCIi6ZdDkqvt27fTo0ePW/YXLFiQEydOOOKSIiKWc3OzM2pUPOvXQ+HCcPQo1K8Pw4bpC6s4p6xZzbpt48aZ7Y8/hmbNTG+WiIiknEOSK09PT6KTGA9z8OBB8uTJ44hLiog4jbp1zaKtHTtCfDyMHWu+sGrhYXFGNhsMGWKKtHh7w/ffQ82aZj6WiIikjEOSq+DgYEaPHk3sf7dqbTYbkZGRDB48mNatWzvikiIiTsXXF2bPhgULIGdOMwfLZrM6KpHbCw6GzZtNNcxff4VatWDVKqujEhFJXxySXL3zzjucOnWKBx98kEuXLhEYGEjx4sXJli0bISEhjrikiIhTatsWDh2C5567vm/HDjh1yrqYRG6nYkVT6OLhh01Blsceg4kT1esqIpJcbo44qa+vLxs3bmTNmjXs3LmT+Ph4qlatSuPGjR1xORERp5Y79/Xfz5wxPQRxcTBjBjRvbl1cIknJk8cMDezVC6ZPh3794OefYdIk8PCwOjoREefmkOTqmkaNGtGoUSNHXkJEJF05e9YME9y3z/QKvPQSTJgAXl5WRyZynbs7/O9/UKGCSa5mzDA9sIsXw4MPWh2diIjzcsiwwFdeeYUPPvjglv0fffQRffr0ccQlRUTShRIlzLCrV1812x9/bNYcCg+3Ni6Rm9lspp2uWAHZs8PGjWZdrD17rI5MRMR5OSS5Wrx4MXXr1r1lf506dVi0aJEjLikikm5kzQqhoaZYQL58pipbzZowfrzmtojzCQqCLVugeHH4/XeoUwe+/NLqqEREnJNDkqszZ86QPXv2W/b7+vpy+vRpR1xSRCTdCQqCvXuhVSuzDtaePaooKM6pdGnYuhUeeQQuXIAnnjBrY+lmgIhIYg5JrooXL86qJOq3rly5kqJFizrikiIi6VLu3GYey9y5ZojgNVeuWBeTSFJy5YKVK6F3b7M9dKipgnnpkrVxiYg4E4cUtOjXrx+9e/fm1KlTCQUtvv/+e959911CQ0MdcUkRkXTLZktcqt1uNyXcfXxMwpUjh3WxidwoSxb48EMoX94kWZ99Br/8YhYgLlDA6uhERKznkOSqa9euXLlyhZCQEMaMGQNA4cKFmTx5Mh07dnTEJUVEMozwcPjmG1OufeNGmDMHAgOtjkrkuh49oFQpaN3aFGgJCDDzsKpXtzoyERFrOWRYIMCLL77In3/+yV9//UV0dDRHjhxRYiUikgxVq5qkqlgxiIyEhg1h8GCIibE6MpHrGjSAbdugbFk4fhzq1YMFC6yOSkTEWg5Lrq7JkycPPj4+jr6MiEiGUquW6cHq1s0MExw/3uyLiLA6MpHrihWDH380a7ZdvgxPPw3Dh0N8vNWRiYhYwyHJ1V9//UWHDh0oUKAAbm5uuLq6JvoREZG7y5YNpk2DJUvggQdMstWmjb64inPx9TVDAl97zWyPGQNPPWWqCoqIZDYOmXPVuXNnIiMjGTZsGPnz58em2sIiIvesVSuzDtbzz8OQIeDi8DEHIinj6goTJkC5cvDCC+aGwOHDsHw5+PtbHZ2ISNpxSHK1ceNGNmzYQOXKlR1xehGRTKdAAVPk4kazZ5vy2C1aWBOTyM06dYISJcwNgd27TaGLpUvNwsMiIpmBQ+5/+vn5YdfKgiIiDnPoELz4IrRsCT17agiWOI86dUwFwcqV4eRJU5Bl1iyroxIRSRsOSa5CQ0MZPHgwR48edcTpRUQyvUKFoFcv8/vUqabC4I4d1sYkco2/v6l4+eSTpsplly5mTlZcnNWRiYg4lkOSq3bt2rFu3TqKFStGtmzZyJUrV6IfERG5Px4e8M47sHo1FCxoerJq14aQEH2BFefg7Q0LF5rqgWDaa8uWEB1tbVwiIo7kkDlXoaGhjjitiIjc5JFHYM8eMzRw4UJ44w2TcK1ebYoMiFjJxQVGjTJrYXXuDCtWmJsAy5ebMu4iIhmNQ5KrTp06OeK0IiKShFy5zOKtjz8OvXubxV2VWIkzadfOJFPBwbB/P9SoAYsWmflYIiIZicMK+h4+fJg33niDZ555hpMnTwKwatUq9u3b56hLiohkWjYbdOwIP/8MQ4de33/kCJw9a11cItdUr24KXQQEmDbZtKmZLygikpE4JLn64YcfqFChAlu3bmXJkiWcP38egD179jBixAhHXFJERDCFBNz+G5Nw5Qq0bg0VK8KaNdbGJQJmSYEffoD27XGZNVkAACAASURBVOHqVTOctXdviI21OjIRkdThkORq8ODBjB07lrCwMNzd3RP2N2zYkB9//NERlxQRkZscP25KtB87ZuZmDRhgEi4RK2XNCvPmwbhxZvvjj6FZM/WwikjG4JDkau/evbRq1eqW/Xny5OHMmTOOuKSIiNykSBEID4cXXjDb775r5rpodLZYzWaDIUNg2TJTVfD776FmTThwwOrIRETuj0OSqxw5chAVFXXL/vDwcAoWLOiIS4qISBK8vc28li+/hNy5TWXBatXggw8gPt7q6CSzCw6GzZvNum2//gq1asGqVVZHJSJy7xySXLVv355BgwZx4sQJbDYb8fHxbNq0iQEDBtCxY0dHXFJERO6gZUvYu9cMv7pyxVQXVHIlzqBiRVPo4uGH4dw5eOwxCA0Fu93qyEREUs4hyVVISAj+/v4ULFiQ8+fPU7ZsWerXr0+dOnV44403HHFJERG5i3z54JtvYNIkM+flWuELJVlitTx5zNDArl1Ne+zbF55/HmJirI5MRCRlHLLOVZYsWfj0008ZM2YMO3fuJD4+nipVqlCiRAlHXE5ERJLJZoMXX0y8b8AA02Pw/vvg42NNXCLu7jBtGlSoAP37w/TpcPAgLF4MDz5odXQiIsnjsHWuAIoWLUqbNm1o3bo1Fy5c4O+//3bk5UREJIWOHDHzr2bMgMqVYcsWqyOSzMxmgz59YMUKyJ4dNm40RVj27LE6MhGR5HFIctWnTx+mT58OQFxcHIGBgVStWhU/Pz/WrVvniEuKiMg9KFrUDMfy94fDh828l1GjzBpEIlYJCjKJfvHi8PvvUKeOKcoiIuLsHJJcLVq0iEqVKgHw1VdfceTIEQ4cOECfPn0YOnSoIy4pIiL3KDAQdu82C7vGxcHIkSbJ+vVXqyOTzKx0adi61azRduECtGoFb76pQhci4twcklydPn2afPnyAbBixQratm1LyZIl6datG3v37nXEJUVE5D7kyAGffmp+smc3X2obNFBBAbFWrlywciX07m2Sqtdfh+eeg0uXrI5MRCRpDkmu8ubNy/79+4mLi2PVqlU0btwYgIsXL+Lq6uqIS4qISCpo3970YgUGwoQJpsiAiJWyZIEPP4TJk02Fy88+M4l/EstpiohYziHJVZcuXWjbti3ly5fHZrPRpEkTALZu3Urp0qVTfL5JkyZRpEgRPD09qVatGhs2bEjW8zZt2oSbmxuVK1dO8TVFRDKrQoVgzRqTaF2zejWEhVkXk0jPnvDdd6Y3a9s2CAiAn36yOioRkcQcklyNHDmSadOm8cILL7Bp0yY8PDwAcHV1ZfDgwSk614IFCxLmaoWHh1OvXj2aNWtGZGTkHZ937tw5OnbsyCOPPHLPr0NEJLNyueH/DqdOQYcO0LSpWX/o8mXr4pLMrWFDk1iVLQvHjkG9emZBbBERZ+GwUuxt2rShb9++5M6dO2Ffp06dCA4OTtF53nvvPbp160b37t0pU6YMoaGh+Pn5MXny5Ds+r0ePHrRv357atWvfU/wiImJ4e8OTT5rfQ0NNj4FKY4tVihWDH3+E5s3N3Kunn4bhw7UYtog4B4csIhwXF8e4ceOYMmUKf/31F4cOHaJo0aIMGzaMwoUL061bt2SdJyYmhp9++umW3q6mTZuyefPm2z5v5syZHD58mHnz5jF27Ni7XufKlStcuXIlYTs6OhqA2NhYYmNjkxWrOJ9r753eQ0kLGbm9ZclikqqgIBvPP+/Kzz/bCAiwM3ZsPK+8Ep+ol0vSTkZuc3eTNatZXHjoUBfee8+VMWNg7954Zs6Mw9vb6ugypszc3sQaztTmUhKDQ5KrkJAQZs+ezYQJE3j++ecT9leoUIGJEycmO7k6ffo0cXFx5M2bN9H+vHnzcuLEiSSf88svvzB48GA2bNiAm1vyXt6bb77JqFGjbtn/3Xff4eXllaxziPMK00QRSUMZvb1NmODOxx9XZvv2/Awc6Mq8eWd5440tuLur28AqGb3N3Un9+nD1qh+TJlVi2TJXdu+O5vXXt5Enj8oJOkpmbm9iDWdocxcvXkz2sQ5JrubMmcMnn3zCI488Qs+ePRP2V6xYkQMHDqT4fDabLdG23W6/ZR+YHrP27dszatQoSpYsmezzDxkyhH79+iVsR0dH4+fnR9OmTfH19U1xvOIcYmNjCQsLo0mTJmTJksXqcCSDy0zt7ZlnYPr0qwwY4EqFCg/wxBOPWh1SppSZ2tydNG8OrVvbeeopO7/9loOhQ5uwcGEctWtrQazUpPYmac2Z2ty1UW3J4ZDk6tixYxQvXvyW/fHx8SnqVsudOzeurq639FKdPHnylt4sgH///ZcdO3YQHh5O7969E65pt9txc3Pju+++o1GjRrc8z8PDI6Hoxo2yZMli+Zsp90/vo6SlzNLeXnzRLO6aN6+NLFnMuMAzZ8wQQt2TSluZpc3dSf36sH07tGwJu3fbaNLEjU8+gU6drI4s41F7k7TmDG0uJdd3yEj5cuXKJVkufeHChVSpUiXZ53F3d6datWq3dAeGhYVRp06dW4739fVl79697Nq1K+GnZ8+elCpVil27dlGzZs2UvxgREUlSyZJmwWEwC7x26gSVK8OmTdbGJZmTv79pe08+aRa/7twZXnsN4uKsjkxEMhOH9FyNGDGCDh06cOzYMeLj41myZAkHDx5kzpw5fP311yk6V79+/ejQoQPVq1endu3afPLJJ0RGRiYMNxwyZAjHjh1jzpw5uLi4UL58+UTPf/DBB/H09Lxlv4iIpJ4TJ+Dnn+H3300vwuuvmwpuusEtacnbGxYuhJEjYcwYeOcd2L8fPv9cPaoikjYc0nPVokULFixYwIoVK7DZbAwfPpyIiAi++uqrhAWFk6tdu3aEhoYyevRoKleuzPr161mxYgWFChUCICoq6q5rXomIiGPlzw+7d5v1sOLjYexYqFsXDh2yOjLJbFxcYPRomD8fPP/P3n2HR1W0fRz/bhoBQqjSA4TmE6QpRZGuFAERfRGlPXQBEWkiRZQiKiBVQHqXLiAWohSlCoJAQEoEpSsdgdCSbJLz/jEPC0gCATY5Kb/PdeUiezI5e28yG859ZuYeXwgOhgoV4NAhuyMTkdTA7clVdHQ069evp3z58qxfv56rV69y/fp1Nm3aRK1atR7qnJ06deLo0aNERESwY8cOqlSp4vrarFmzWLduXZzfO3DgQHbt2vVQzysiIvGXMSPMmWMuajNlMmtgnnwSpkwx0wZFEtPrr8PGjZA7txm9Kl8e1q61OyoRSencnlx5enpSu3ZtLl265O5Ti4hIMvD667BnDzz3HFy/DsOGmX9FElvZsibJL1cO/vkHatWCyZPtjkpEUrIEmRZYokQJDh8+nBCnFhGRZCBvXli9GoYPh7lz0cauYpvcuWH9emjaFKKioGNH6NQJdA9YRBJCgiRXH3/8MT179uS7777j1KlThIWF3fEhIiIpn4cH9Oxp1rvc9Pnn0LmzRrIkcaVNa5L8Tz4xjydOhAIF4IMPzBYCIiLukiDJ1QsvvMDu3bt56aWXyJs3L5kzZyZz5sxkypSJzJkzJ8RTiohIEnf2rCmN/fnnZrpWSIjdEUlq4nBA376mwMUTT8Dly6bwSoEC0Lu36Z8iIo8qQUqx//TTTzgcjoQ4tYiIJFPZs8Py5Wb/odBQePppUy67Z0/w9LQ7Okkt6tSB2rVNX/zoI5Pkf/opjBsH7dubGwB58tgdpYgkVwmSXFWrVi0hTisiIslcrVrw22/mIvarr6BPH/j+e1NlMF8+u6OT1MLDw2w2/MorZiRr8GDYuhU++8xMGWzb1oxm/W/XFxGReHPrtMDr16/z1ltvkSdPHrJnz07Tpk05f/68O59CRESSuWzZYOlSmD7dFLpYvx6eegq0JFcSm8MB9erBli2wahVUrgyRkSbBKlzYJFl//ml3lCKSnLg1uRowYACzZs2iXr16NG7cmNWrV/Pmm2+68ylERCQFcDigTRuz8fAzz0DXruDvb3dUklo5HFCzJmzYAOvWQY0aprLgjBnw+ONmc+zQULujFJHkwK3TApctW8b06dNp3LgxAM2bN6dixYpER0fjqQn1IiLyL4UKmY1eb7d3r9mT6Lb94kUSTdWq5mPLFrMmKzjYVBqcNw9efRXefx9KlrQ7ShFJqtw6cnXixAkqV67sely+fHm8vLw4efKkO59GRERSEC8v8wEQHm72I6pWzVR2i4y0NTRJxSpUgBUrYPt2szbLsuDLL6FUKXj5Zdixw+4IRSQpcmtyFR0djY+Pzx3HvLy8iIqKcufTiIhIChUdDeXKmQvZoUPNBe7vv9sdlaRmZcrAsmWmEMvrr5sphF9/bbYTqFsXNm+2O0IRSUrcOi3QsixatWpFmjRpXMfCw8Pp2LEj6dOndx1btmyZO59WRERSiPTpTaGLevXgjTdg505T7GLkSOjY0VzYitihRAlYuBAGDoQhQ8w0we+/Nx/PPWc2JK5aVX1UJLVz68hVy5YtyZ49OxkzZnR9NG/enNy5c99xTERE5F7+7/9gzx5TZODGDejUCV58URUFxX7/+Q/Mng0HDkC7duDtDT/9BNWrm3WCK1eakVcRSZ3cOnI1c+ZMd55ORERSsdy54YcfzOauvXvDlStmZEskKShUCKZONSNWw4aZEddNm+CFF6B8eVP44sUXNZIlktq4deRKRETEnTw8TJn27dvhiy/gZuHZ8HC4ds3e2ETAbH79+edw+DB07w5p08K2bfDSS/Dkk7BkCcTE2B2liCQWJVciIpLkFS8O+fPfety7t1mLtX27fTGJ3C53bhg1Co4ehT59wM/P7OPWqJFZrzV/vinYIiIpm5IrERFJVi5fNtXbDh401QQ/+UQXrZJ0ZM9uCl4cOwb9+0PGjLB/PzRrBkFBMGsWOJ12RykiCUXJlYiIJCsZM5oRgVdfhago6NfP7It19KjdkYnckiULDBpkkqyPPoKsWeGPP6B1ayhaFCZPhogIu6MUEXdTciUiIslOliyweLEZBfDzM4UESpWCuXNVqU2SlowZzQ2Ao0dh+HDIkcN83rEjFC5sCrbcuGF3lCLiLkquREQkWXI4oGVLM4r17LOmTPvbb8OFC3ZHJnI3Pz/o2ROOHIHPPoM8eeCvv6BLFwgMhBEj4OpVu6MUkUel5EpERJK1ggVh/XoYPNhMtcqWze6IROKWNq1JqA4dgkmTTKGWM2fg3XehQAGzhvDyZbujFJGHpeRKRESSPS8vs6/Qa6/dOhYcbEYKtK5FkqI0aaBDB7MOa8YMM0XwwgUzhbBAARgwAP75x+4oReRBKbkSEZEU5+pVaNMGRo40G7ru22d3RCKx8/Y2RS5CQ2HePChWDC5dgg8/NKNaffvC2bN2Ryki8aXkSkREUhw/P5gyxUwR/O03KFMGxo7VZq6SdHl5QdOmsGcPfPmlKdBy9SoMHWpGsnr0gFOn7I5SRO5HyZWIiKRIL71kLlTr1DFTA7t2hbp1dYEqSZuHh9lmICQEvvkGypUz1QRHjzaFLzp3hhMn7I5SROKi5EpERFKsnDlhxQoYPx58fWHlSihRAk6ftjsykXtzOKB+fdi6FX74ASpWNDcJPv8cChWCN96Aw4ftjlJE/k3JlYiIpGgOB7z1FuzYAaVLmwvWnDntjkokfhwOqF0bNm6EtWvhuefA6YRp08xmxC1bwoEDdkcpIjcpuRIRkVShWDEzCjB+/K1jp0+bYyJJncMB1arBjz/Czz/DCy9AdDTMmQNBQdC4Mezda3eUIqLkSkREUg0fH0if3nxuWaaiYMWKpjJbVJS9sYnE17PPwvffw7Zt0KCB6cuLFpkpr//3f7Bzp90RiqReSq5ERCRVCg+HTJnM3f8BA6BKFbOxq0hyUa4cLF8Ou3ZBo0ZmdOurr0x1zBdfhF9+sTtCkdRHyZWIiKRKadPC/PlmbyF/f9iyxazJmjnTjASIJBelSsHixWY/t+bNTcXBFSugQgWoWRM2bLA7QpHUQ8mViIikak2bmr2wqlS5tflwo0Zw8aLdkYk8mKAg+OILU+CiTRuzd9aaNVC1qunfq1frxoFIQlNyJSIiqV7+/PDTTzBkiLkg3b0bvL3tjkrk4RQuDNOnwx9/QMeOZq3hxo1Qq5YZzVqxQkmWSEJRciUiIgJ4ekKfPqZ64MKF4OdnjsfEmPVZIslNgQIwcaLZD6trV7PX29atZj1WmTKwbJnp3yLiPkquREREbvPUU+bC86bx403hgN9+sy8mkUeRJw+MGQNHj0KvXqZiZkgINGxo1mstXGgKu4jIo1NyJSIiEoeICBg1yuwfVK6c+Vx3+iW5ypEDhg2DY8fg/fdNIZe9e6FJE7MP3OzZ2pJA5FEpuRIREYlDmjRmL6EXX4TISHjnHbNu5e+/7Y5M5OFlzQqDB5ska/BgyJIFDh6EVq2gaFGYOtX0dxF5cEquRERE7iF7dvjmG5g0yZRv//FHs1nrkiV2RybyaDJlMiNYR4+aEa3s2eHIEWjfHgoVMlNitd5Q5MEouRIREbkPhwM6dDDrVMqUMWXamzQxF6UiyV2GDGYt1pEjMHo05MoFf/0Fb78NgYFmOuy1a3ZHKZI8KLkSERGJp8cfh82boV8/M52qQAG7IxJxn3TpoFs3U11wwgTIlw9OnzbTYYsU8WLp0iKEhdkdpUjSpuRKRETkAfj4wEcfmbLtN+3eDf37g9NpX1wi7uLrC2++afbJmjbNTBE8f97BF18Uo0gRLwYN0ibbInFRciUiIvIInE5o1syMZFWsaAoDiKQEPj7Qti38/jvMnBlF3rxXuHjRwcCBZuPt996D8+ftjlIkaVFyJSIi8gi8vc2oVaZM8Ouv8OSTMGUKWJbdkYm4h5cXNGtm8dlnPzFvXhQlSsCVKzBkiEmyevY00wdFRMmViIjII3vtNdizB557Dq5fN8UvXn4Zzp2zOzIR9/H0hEaNLHbtguXLTXGX69dh5EhT+KJLF1MIQyQ1U3IlIiLiBnnzwurVMGKEmU71zTemZPuff9odmYh7eXhAgwZmpDY4GCpUMCXbx42DggXNzYUjR+yOUsQeSq5ERETcxMPDVFbbtg2KFYOgIHNHXyQlcjigTh34+Wez/1u1amYN4pQpUKQItG6tNYiS+ii5EhERcbNSpWD7dli0yEylAjN96rff7I1LJCE4HGZK7Nq1sHEj1KoF0dEwa5a5wdC0KezbZ3eUIolDyZWIiEgCSJsWsme/9bhXLyhbFj791Fx4iqRElSrBypWwdSvUrw8xMbBgARQvDq++ajbiFknJlFyJiIgksKgoOHnSTJnq3Rtq1IDjx+2OSiThlC9v1h2GhEDDhubY0qXw1FMm6dq2zd74RBKKkisREZEE5uVlLiynTYP06WHdOihZEhYutDsykYRVujQsWQJ795rpgR4e8N138PTTULs2bNpkd4Qi7qXkSkREJBE4HGZD1l27zIXl5cvQpAk0b24+F0nJnngC5s2D0FBo1cqsRVy1CipXNoUwfvxRe8NJypAskqsJEyYQGBiIr68vZcqUYePGjXG2XbZsGTVr1uSxxx7D39+fChUqsHLlykSMVkREJG6FC5tF/wMGmLv4wcFmQ1aR1KBoUZg5E/74w5Rs9/aG9evNVNmKFeH775VkSfKW5JOrRYsW0a1bN/r160dISAiVK1emTp06HI9jsvqGDRuoWbMmwcHB7Nixg+rVq1O/fn1CtIJSRESSCG9vGDjQTIn64guzR9ZNKnYhqUFgIEyaBIcPw9tvg68vbNkCdetCuXJmk+KYGLujFHlwST65GjVqFG3btqVdu3YEBQUxZswYAgICmDhxYqztx4wZQ69evShXrhxFihThk08+oUiRInz77beJHLmIiMi9VagA9erdevztt2bK4O+/2xeTSGLKmxfGjjWbDvfsCenSwY4d8MorZr3W4sW64SDJi5fdAdxLZGQkO3bsoE+fPnccr1WrFps3b47XOWJiYrhy5QpZsmSJs01ERAQRERGux2FhYQA4nU6cTudDRC5Jwc3fnX6HkhjU3+RRxcTAu+96ceCAg6eeshg+PIY33ojB4Yi9vfqcJKaE7m9Zs8Inn0CPHvDZZx5MmODBnj0OXn8dHn/confvaBo3tvBK0leu4k5J6W/cg8TgsKykO7P15MmT5MmTh59//plnn33WdfyTTz5h9uzZHDhw4L7nGD58OEOHDiU0NJTst284cpuBAwcyaNCgu47Pnz+fdOnSPfwLEBEReQAXLvgyduyT7N5t/r8qW/Y0nTuHkClTpM2RiSSuq1e9WbEikG+/LcTVqz4A5Mx5lYYN/6BatRN4eyfZy1dJga5fv07Tpk25fPky/v7+92ybLJKrzZs3U6FCBdfxjz/+mC+++ILf7zNvYsGCBbRr146vv/6aGjVqxNkutpGrgIAAzp8/f98foCRdTqeT1atXU7NmTby9ve0OR1I49Tdxl5gYGD/eg379PIiIcJA9u8XkydHUq3fnf9fqc5KY7OpvYWEwaZIHY8Z4cP68GcbNl8+iZ88YWrWKwdc30UKRRJaU/saFhYWRLVu2eCVXSXpwNVu2bHh6enL69Ok7jp89e5YcOXLc83sXLVpE27Zt+fLLL++ZWAGkSZOGNGnS3HXc29vb9l+mPDr9HiUxqb+JO7zzDtSqBc2awZ49Dl55xYuQELMG5d/U5yQxJXZ/y5oV+vWDbt1g8mQYPhyOH3fQpYsnQ4d68u670L69WaslKVNS+Bv3IM+fpAta+Pj4UKZMGVavXn3H8dWrV98xTfDfFixYQKtWrZg/fz71bl8pLCIikkyUKAHbtkH37tCuXeyJlUhqkT69WY915AiMHw8BAXDypHl/BAbCp59qSwNJGpJ0cgXQo0cPpk2bxowZMwgNDaV79+4cP36cjh07AtC3b19atGjhar9gwQJatGjByJEjeeaZZzh9+jSnT5/msnZoFBGRZMbXF0aNgilTbh07dcrcvVcFNUmNfH3hrbfgzz/N+yIwEM6ehd69oUABGDwYLl2yO0pJzZJ8cvX6668zZswYPvzwQ0qXLs2GDRsIDg4mf/78AJw6deqOPa8mT55MVFQUb731Frly5XJ9dO3a1a6XICIi8khuVgy0LGjVCnr1gho1PDlzJq2tcYnYxccH3ngDDh6E2bPN5sT//AP9+0P+/PD++3Dhgt1RSmqU5JMrgE6dOnH06FEiIiLYsWMHVapUcX1t1qxZrFu3zvV43bp1WJZ118esWbMSP3ARERE3a9oU/Pzg55896NatOnPnOki6palEEpaXF7RoAfv3w4IF8MQTpgjGxx+bJKtXLzhzxu4oJTVJFsmViIiImBGsli1h926oUCGGGze8adPGi8aN4eJFu6MTsY+nJzRuDL/9BsuWwZNPwrVrZgptYKApiPH333ZHKamBkisREZFkpmBB+PHHaJo2DcXT02LxYihZEvbutTsyEXt5eMArr8COHfDdd/D003DjBnz2mXnfvPkmHDtmd5SSkim5EhERSYa8vOC11w6yYUM0RYqYUtSBgXZHJZI0OBxQrx5s2QKrV0OVKhAZCZMmQeHC0LatKYoh4m5KrkRERJKxcuUsdu40d+nTpzfHYmLg0CF74xJJChwOqFED1q83HzVqQFQUzJgBjz8OzZtDaKjdUUpKouRKREQkmfPzgyJFbj3+7DMoXhzGjUPFLkT+p0oVM4q1ZYsZ1YqJgXnzTBGM114zaxlFHpWSKxERkRTEsmDDBggPhy5doE4dszeWiBjPPGNGenfsMOuzLAu+/NJs1N2gAWzfbneEkpwpuRIREUlBHA5TLW3cOLPh6sqVUKIELF9ud2QiSctTT5n3yp49ptKgwwHffAPlypmbEps32x2hJEdKrkRERFIYhwM6dzZ35kuXNpupvvKK2XT16lW7oxNJWooXN3tkhYaaPbM8PeGHH6BiRXjuOVi7VtNrJf6UXImIiKRQxYrB1q1mI1WHA2bPVoU0kbg8/rh5jxw8aG5EeHubxOq556ByZTMKrCRL7kfJlYiISArm4wPDhsFPP8H48WYkS0TiVrAgTJlibkS89RakSQM//wwvvGD2zfrmGyVZEjclVyIiIqlAtWrQvv2txyEhUL06HD5sW0giSVq+fOaGxJEj0KOH2Uvu119N0Ysnn4QlS0zFQZHbKbkSERFJZSzL3JFftw5KlYJZs3QnXiQuuXLByJFw9Cj06WO2Pti9Gxo1Muu15s0ze2eJgJIrERGRVMfhgPnzzTqSq1ehdWuzz8+FC3ZHJpJ0PfYYDBkCx47BgAGQKZMpgtG8OQQFwcyZ4HTaHaXYTcmViIhIKlSggFmsP2QIeHmZKU4lS8KaNXZHJpK0ZckCAweakayPP4asWc36rDZtzGbekyZBRITdUYpdlFyJiIikUp6eZprTL7+YSmknT0LNmibpEpF7y5gR3nvPJFkjRkCOHGZU6803oVAhGDsWbtywO0pJbEquREREUrkyZWDnTnNR+NxzULWq3RGJJB9+fvDOO6bwxdixkCcP/P03dO0KgYEwfLj2l0tNlFyJiIgI6dLBhAnw/ffg8b+rg+vXYepUVUQTiY+0aeHtt+HQIZg82Uy9PXPG7DNXoICZQnj5st1RSkJTciUiIiIuPj63Pn/nHVO+vVYtcydeRO4vTRrzvjl40BS5KFLEFIt5/33Inx/694d//rE7SkkoSq5EREQkVqVLm7vxP/4IJUqYohciEj/e3tCqlakoOG8eFCtmRq4GDzZJVp8+cPas3VGKuym5EhERkVh16GA2Gy5TBi5eNPv6tGoFYWF2RyaSfHh6QtOmsGePuUFRurRZgzVsmJku2KOHKSYjKYOSKxEREYnT44/D5s2mKprDAbNnm4vDXbvsjkwkefHwgIYNTfGYb7+F8uVNNcHRo6FgQbOx9/Hjdkcpj0rJlYiIiNyTj49ZjL9+vZnOdPkyZM9ud1QiyZPDAS++aLZAWLkSKlUy+2JNBLppCwAAIABJREFUmACFC8Mbb5iiGJI8KbkSERGReKlcGXbvhuBgyJ371vFz5+yLSSS5cjhMsZgNG8zecs8/D04nTJtmRoxbtIDff7c7SnlQSq5EREQk3jJmhKefvvV4+XKzl8+0aWBZ9sUlklw5HFCtGqxZY6bg1qkD0dHwxRemCEbjxma9liQPSq5ERETkoc2fD9eumalMr7yiUSyRR1GhghkZ/vVXePllc8Ni0SIoWdK8v3bssDtCuR8lVyIiIvLQFi6E4cNN2emvvzYXgT/8YHdUIslb2bLw1VdmGu5rr5nRreXLzfF69WDLFrsjlLgouRIREZGH5uEBPXvCtm1mCtPp02Za09tvm0poIvLwSpY0I1f79sF//2vKugcHw7PPQo0apsiMJC1KrkREROSRlS4N27dDly7m8fjxuvATcZegIJgzBw4cgLZtwcvLbO5drRpUqQKrVmnNY1Kh5EpERETcIm1a+OwzMy2wb1944QW7IxJJWQoVMsVj/vwT3nzTbJOwcSPUrm3Wa333nZIsuym5EhEREbeqXRs++eTW47//NpunnjhhX0wiKUn+/GZfrCNHoFs3c2Nj61aoXx/KlIFlyyAmxu4oUyclVyIiIpKgOnc2F3s314+IiHvkzg2jR5skq1cv8PODkBBzM6NkSViwwJR1l8Sj5EpEREQS1KefQvnycOmS2bPnv/+Fy5ftjkok5ciRA4YNg6NH4YMPzH50+/ZB06ZmvdasWWaDYkl4Sq5EREQkQRUpAps2mYs+Dw+YOxdKlTJrRUTEfbJmhQ8/NEnW4MGQJQv88Qe0bg2PPw5TpkBEhN1RpmxKrkRERCTBeXubi76NGyEwEI4dM5XOvvnG7shEUp5MmeD998377NNPIXt2M3WwQwcoXNhU89RWCQlDyZWIiIgkmmefNRujtm4NRYuavXpEJGH4+cG775rEaswYs0brr7/MPnQFC8LIkXDtmt1RpixKrkRERCRRZcgAM2bAL79AunTmWEyMKXqhMtIi7pcuHXTtCocPw8SJptrg6dNmA/ACBWDIEAgLszvKlEHJlYiIiNgiY8Zbn48caSqc1a8PZ87YF5NISpYmDXTsaNZhTZ9u9s06fx7ee88kXAMHwsWLdkeZvCm5EhEREdulTWsu/FasgBIlzGaoIpIwvL2hTRv4/XdTYCYoyFTzHDTIJFnvvQfnztkdZfKk5EpERERs17kz/PqrSazOnTMjWG++Cdev2x2ZSMrl5QXNmsHevbB4sdkb68oVM02wQAEzbfDUKbujTF6UXImIiEiSUKIEbNsG3bubx5MmwVNPwa5d9sYlktJ5eECjRmYD4q+/hrJlzY2NkSNNdc+334YTJ+yOMnlQciUiIiJJhq8vjBoFq1ebymZHjoDDYXdUIqmDhwe89JK5yfH996a6Z0SEKd1eqBC0b2/ekxI3JVciIiKS5NSoAXv2wJIlZsPhmzRNUCThORzwwgtm8+8ff4Tq1cHphKlTzabgrVrBwYN2R5k0KbkSERGRJClLFrP26qadO81i+7lzVbJdJDE4HPDcc/DTTybRql0boqNh9mxTBKNJE7NeS25RciUiIiLJwtixpmz0f/8LTZuqZLRIYqpYEX74AbZuNVMHY2Jg4UKzVrJhQ7NeS5RciYiISDIxbRp8+CF4epqLulKlYO1au6MSSV3KlzdFL0JC4NVXzejWsmWm+Ez9+ib5Ss2UXImIiEiy4OUFH3wAmzdD4cKmetnzz0OvXmbRvYgkntKl4csvzbTAZs1MMYzvvoNnnoFatWDjRrsjtIeSKxEREUlWypc3d83feMOsvRo+HBYssDsqkdSpWDGzDvL336F1a3MTZPVqqFIFqlaFNWtS1xpJJVciIiKS7Pj5wZQp8NVX0LgxtGhhd0QiqVuRIjBjBvzxB3ToAD4+sGED1KxpSroHB6eOJEvJlYiIiCRbL79sRq08/ndFc/UqdOwIp0/bG5dIalWggNkA/NAh6NLF7F33yy9Qrx6UKwfLl5tiGCmVkisRERFJMXr3hsmTTQWzr7+2OxqR1CtvXvjsM7Pp8LvvQvr0sGMHvPKKWa+1aJEp657SKLkSERGRFKNTJ1NF8Px5M6rVvr0ZzRIRe+TMCZ9+CkePQr9+4O9vNghv3BieeALmzIGoKLujdJ9kkVxNmDCBwMBAfH19KVOmDBvvU35k/fr1lClTBl9fXwoWLMikSZMSKVIRERGx0xNPmFLQ775rSkRPnQpPPgnbttkdmUjqli0bfPQRHDsGgwZB5sxw4AC0bAmPP262WoiMtDvKR5fkk6tFixbRrVs3+vXrR0hICJUrV6ZOnTocP3481vZHjhyhbt26VK5cmZCQEN577z26dOnC0qVLEzlyERERsUOaNOZO+Y8/mqlJf/5pFtQvXGh3ZCKSKRP072+SrKFD4bHH4PBhU/2zSBGYMAHCw+2O8uF52R3A/YwaNYq2bdvSrl07AMaMGcPKlSuZOHEiQ4YMuav9pEmTyJcvH2PGjAEgKCiI7du3M2LECBo2bJiosYuIiIh9qleH336DN9805aCrVjXHY2LuPVXQ2xvSpjWfWxZcueKetl5ekC7drcdhYXG39fQ0a1Qepu2VK3FXZfPwMJUWH6btjRuehIWZ1/xvDgdkyHDr8bVr915P4+//cG2vX7/3FLIMGUwsD9r2xg1wOuNu6+d3q2hKePi9R1gepG369Ob3B2avtnvt15YunelDD9o2MvLeyUratLd+pw/S1uk0P7e4+PqaioFgfg/Xr9/d5s03TaXPuXNh9Gg4fhzeestsFt65swdFinjG/QRJVJJOriIjI9mxYwd9+vS543itWrXYvHlzrN+zZcsWatWqdcex2rVrM336dJxOJ96x/EWIiIgg4rYeGva/v2BOpxPnvd5pkqTd/N3pdyiJQf1NEpv6XPz4+Zk1HX//baYlOZ3w119QsGAsGcL/tGsXzYQJppzZxYuQI0fcbZs0iWH2bJMZRERAxoxxt33ppRiWLLmVRWTJ4kV0tCPWtjVrxrBixa22AQFehIXF3vbZZ2NYt+5W26JFvTh9Ova2pUpZ/PrrrYzjySe9OHQo9rZFiljs22faOp1O+vatTJMmsb++PHksjhy5dd7nn/dk69bYJ0hlymRx9uytti+95MlPP8Xe1sfH4urVW21ff92T776Le+LV9etOV1LRurUnixfH3fbcOScZM5rP33rLk5kz42577JiTXLnM5+++68H48XFf9O/f76RwYfN5//4eDB8ed9tff3VSqpT5fOhQDwYOjLvthg1RPPOMyYTHjfPg3Xfjbvv991E8/7xpO22aB2+9FXfbJUuieOkl03b+fAetW8edHsyZE0Xjxqbt8uUOXnst7raTJkXRpo1pu2qVgxdfjLvtyJHRHDgQw6xZHnz0kQdnzjj44ANP/P1rkjt3NM88E+e3JooH+TubpJOr8+fPEx0dTY4cOe44niNHDk7HUWP19OnTsbaPiori/Pnz5Lr5zrjNkCFDGDRo0F3HV61aRbrbbzFJsrR69Wq7Q5BURP1NEpv6XPz99pv59/x5X6B2nO2OHz9BcPBuAK5e9Qbqxtn25Mm/CQ7eCYDT6QHUj7PtmTNnCA6+tfjLsuoDsSc2586dJzh4i+txVFRdIPbE5uLFiwQHb3I9joioDfjG2jYs7DLBwetdj69dex7wi7XttWvXCA7+8bYj1WJtBxAeHk5w8CrX40uXKgNZYm3rdDoJDv7e9fj8+WeBx2JtGxMTQ3BwsOvx2bPlgbuv5W76/vvv8fQ0F/SnTpUB8sbZdtWqVaRPbxK3EydKA/njbPvjjz+SJYu5EX/0aHGgUJxt169fz8GD1wA4fDgIKBpn202bNvH33+am/sGDRYGgONtu3ryZf/65CEBoaEGgRJxtt23bRkTEOQD27s0PlI6z7Y4dO/DyMtfVu3fnBcrE2XbXrl34+/8NwM6duYDycbbds2cPwcFmGU9IyGPAs3G23b9/Pz/9dJh8+aBz56z0718JMKOqJ0+uITjY3rKC12MbdouDw7KS7nZeJ0+eJE+ePGzevJkKFSq4jn/88cd88cUX/P7773d9T9GiRWndujV9+/Z1Hfv555+pVKkSp06dImfOnHd9T2wjVwEBAZw/fx7/28eiJVlxOp2sXr2amjVrxjpiKeJO6m+S2NTnHp5l3XuqlofHralPCdUW7j2ty+G4NaUqKbQ1CdEann++Rpz9LU2aW59HRt57w9iHbet03nuPJB+fW1P9EqptVNS9pzE+SFtv71tTCBOqbXT0vadHenndmpqYUG1jYu497dLT89Y0xpttb9xwsmDBL7Rr94ztf+PCwsLIli0bly9fvm9ukKRHrrJly4anp+ddo1Rnz569a3Tqppw5c8ba3svLi6xZs8b6PWnSpCHN7e/c//H29rb9lymPTr9HSUzqb5LY1Ocezu0Jhl1tH+TXljTaWvj5xa+/JY141TaptIU7k+T4tE2TBvLnv5Ik/sY9yPMn6WqBPj4+lClT5q4pD6tXr+bZZ2MfWqxQocJd7VetWkXZsmVt/8WIiIiIiEjKlaSTK4AePXowbdo0ZsyYQWhoKN27d+f48eN07NgRgL59+9KiRQtX+44dO3Ls2DF69OhBaGgoM2bMYPr06fTs2dOulyAiIiIiIqlAkp4WCPD6669z4cIFPvzwQ06dOkXx4sUJDg4mf36z6PDUqVN37HkVGBhIcHAw3bt35/PPPyd37tyMHTtWZdhFRERERCRBJfnkCqBTp0506tQp1q/NmjXrrmNVq1Zl586dCRyViIiIiIjILUl+WqCIiIiIiEhyoORKRERERETEDZRciYiIiIiIuIGSKxERERERETdQciUiIiIiIuIGSq5ERERERETcQMmViIiIiIiIGySLfa4Sm2VZAISFhdkciTwKp9PJ9evXCQsLw9vb2+5wJIVTf5PEpj4niUn9TRJbUupzN3OCmznCvSi5isWVK1cACAgIsDkSERERERFJCq5cuULGjBnv2cZhxScFS2ViYmI4efIkGTJkwOFw2B2OPKSwsDACAgI4ceIE/v7+docjKZz6myQ29TlJTOpvktiSUp+zLIsrV66QO3duPDzuvapKI1ex8PDwIG/evHaHIW7i7+9v+5tSUg/1N0ls6nOSmNTfJLEllT53vxGrm1TQQkRERERExA2UXImIiIiIiLiB58CBAwfaHYRIQvH09KRatWp4eWkGrCQ89TdJbOpzkpjU3ySxJcc+p4IWIiIiIiIibqBpgSIiIiIiIm6g5EpERERERMQNlFyJiIiIiIi4gZIrERERERERN1ByJSIiIiIi4gZKrkRERERERNxAyZWIiIiIiIgbKLkSERERERFxAyVXIiIiIiIibqDkSkRERERExA2UXImIiIiIiLiBkisRERERERE3UHIlIiIiIiLiBkquRERERERE3EDJlYiIiIiIiBsouRIREREREXEDJVciIiIiIiJuoORKRERERETEDZRciYiIiIiIuIGSKxERERERETdQciUiIiIiIuIGSq5ERERERETcQMmViIiIiIiIGyi5EhERERERcQMlVyIiIiIiIm6g5EpERERERMQNlFyJiIiIiIi4gZIrERERERERN1ByJSIiIiIi4gZKrkRERERERNxAyZWIiIiIiIgbKLkSERERERFxAyVXIiIiIiIibqDkSkRERERExA2UXImIiIiIiLiBkisRERERERE3UHIlIiIiIiLiBkquRERERERE3EDJlYiIiIiIiBsouRIREREREXEDJVciIiIiIiJuoORKRERERETEDZRciYiIiIiIuIGSKxERERERETdQciUiIiIiIuIGSq5ERERERETcQMmViIiIiIiIGyi5EhERERERcQMlVyIiIiIiIm6g5EpERERERMQNlFyJiIiIiIi4gZIrERERERERN1ByJSIiIiIi4gZKrkRERERERNxAyZWIiIiIiIgbKLkSERERERFxAyVXIiIiIiIibqDkSkRERERExA2UXImIiIiIiLiBkisRERERERE38LI7gKQoJiaGkydPkiFDBhwOh93hiIiIiIiITSzL4sqVK+TOnRsPj3uPTSm5isXJkycJCAiwOwwREREREUkiTpw4Qd68ee/ZRslVLDJkyACYH6C/v7/N0cjDcjqdrFq1ilq1auHt7W13OJLCqb9JYlOfk8Sk/iaJLSn1ubCwMAICAlw5wr0ouYrFzamA/v7+Sq6SMafTSbp06fD397f9TSkpn/qbJDb1OUlM6m+S2JJin4vPciEVtBAREREREXEDJVciIiIiIiJuoORKRERERETEDbTmSkRERJK86OhonE6n3WGkWk6nEy8vL8LDw4mOjrY7HEkFErvP+fj43LfMenwouRIREZEky7IsTp8+zaVLl+wOJVWzLIucOXNy4sQJ7QEqiSKx+5yHhweBgYH4+Pg80nmUXImIiEiSdTOxyp49O+nSpdOFvU1iYmK4evUqfn5+brm7L3I/idnnYmJiOHnyJKdOnSJfvnyP9HdGyZWIiIgkSdHR0a7EKmvWrHaHk6rFxMQQGRmJr6+vkitJFInd5x577DFOnjxJVFTUI5V+17tDREREkqSba6zSpUtncyQiktLdnA74qOu7lFyJiIhIkqapgCKS0Nz1dybJJ1cbNmygfv365M6dG4fDwfLly+/7PevXr6dMmTL4+vpSsGBBJk2alAiRioiIiIhIapbkk6tr165RqlQpxo8fH6/2R44coW7dulSuXJmQkBDee+89unTpwtKlSxM4UhEREZH4i+9NY3crUKAAY8aMSfTnfRStWrXi5ZdfTpTnqlatGt26dUuU50poCfVaBg4cSOnSpd1+3pQgyRe0qFOnDnXq1Il3+0mTJpEvXz7XH42goCC2b9/OiBEjaNiwYUKFmWCOXjrKX5f/IsaKwdPD0+5wkpWoqChCr4aS6UQmvLySfFeXZC4qKoq/wv+yOwwRSSLOnj3LBx98wPfff8+ZM2fInDkzpUqVYuDAgVSoUAGAU6dOkTlzZpsjvdvUqVOZM2cOe/fuBaBMmTJ89NFH/Oc//3Hbc7Rv357p06czb948Gjdu7LbzPoh169ZRvXp1Ll68SKZMmVzHly1b9kgFDeKjVatWzJ49mw4dOtw1w6pTp05MnDiRli1bMmvWrHidL67XIokvxV1xbtmyhVq1at1xrHbt2kyfPh2n0xnrmyUiIoKIiAjX47CwMMAspLV7w8LxW8cz8peRtsaQ7P1pdwCSmuz8bifj6ozD2zNh/2MWufn/k93/TyUkp9OJZVnExMQQExNjdzgPpGHDhjidTmbOnEnBggU5c+YMP/30E+fPn3e9luzZswPY8tpu/lxjs3btWho3bkyFChXw9fVl+PDhvPDCC2zevJkMGTI8crzXr19n0aJF9OzZk2nTpvHaa6/FK957xfwwbp7r3/3rZnKSkL8Xy7IICAhg4cKFjBw5krRp0wIQHh7OggULyJcv3wO93rhey83ncvdrsSzrjudNCDefIyHij01MTAyWZeF0OvH0vHNA40H+zqa45Or06dPkyJHjjmM5cuQgKiqK8+fPkytXrru+Z8iQIQwaNOiu46tWrbK9QtG5M+fwdnjjtMwv1dfDF39Pf7w8UtyvTiRZsyyL05GnmfHbDLYe2krvwN74e/nbHZakAqtXr7Y7hATj5eVFzpw5uXr1KpGRkXaHE2+XL19m06ZNfPfdd5QpUwaAzJkzu0Z+bt7EzZw5M3PnzqVevXoAbN26lZ49e/LHH38QFBREz549ad68ORs2bKBEiRJs2rSJ+vXrs3z5cgYOHMiBAwcoXrw4n3/+OUWKFAHM8oh+/fqxfft2rl+/TtGiRenfvz/VqlVzxRcTE0N4eLgrjn+bMGHCHY9HjBjB0qVL2bBhA7lz537kn8+CBQt4/PHH6dSpE0FBQezdu5d8+fK5vh4dHU3//v2ZO3cunp6eNG/enMjISKKiolwxr1mzhhEjRhAaGoqnpyflypVj6NChBAYGAnD8+HFKlSrFtGnTmDx5Mr/99huBgYEMHz6cSpUqcfz4cZ5//nkAV5n/Jk2aMGHCBF588UVKlCjhuj7ctGnTXe+zihUr8uKLL9K3b18A5s2bx9ixYzl27Bj58uWjffv2tGvXLs6fgdPppESJEhw9epR58+a5Eswvv/yS3LlzU6BAAZxOp+v1WpbF2LFjmTlzJmfOnKFQoUK8++67NGjQ4J6vJSoqivDwcLp168YXX3yBj48PrVu3pk+fPq5YTpw4Qe/evdmwYQMeHh48//zzDBs2zJX8A4wePZqJEydy48YNXn75ZbJmzUp0dHScfcidrly5kuDPARAZGcmNGzfYsGEDUVFRd3zt+vXr8T5PirxC/3e1j5uZb1xVQPr27UuPHj1cj8PCwggICKBWrVr4+9t7cVSXugy7PoyPNn3EpB2TCI8JJ5po3nryLd6r9B6ZfDX0Gxen08nq1aupWbNmgg/vizidTj5Z8gmf/fUZ+67tY8BfA1jWaBlPPPaE3aFJCpUa/saFh4dz4sQJ/Pz88PX1Bcz/6ded8b/Qcad03vHbxDhdunT4+fmxevVqnnvuOdKkSRNn27Rp0+Lv78+VK1do2rQpderUYcGCBRw7dsx1bZI+fXr8/f1dN3yHDBnCqFGjeOyxx+jUqRPdunVj48aNrnPWr1+fIUOG4Ovry5w5c2jSpAmhoaGuBMbDwwNfX994X+NcuXIFp9NJpkyZyJAhwyNXVVuwYAEtWrQgICCAOnXqsGTJEgYOHOj6+vDhw5k3bx7Tpk2jWLFijBo1ihUrVlC9enVXzJZl0bNnT0qUKMG1a9cYMGAALVu2ZOfOnXh4eODn5weYtUGjRo2iWLFijB49mqZNm3Lo0CGCgoL48ssvadSoEaGhofj7+7t+F15eXvj4+ODv70/r1q0ZM2YM586do1ChQgDs27eP/fv3s3TpUvz9/Zk6dSoff/wxY8eO5cknnyQkJIQOHTqQNWtWWrZsGevPwNvbGy8vL9q2bcvixYtdidiiRYto164d69atw9vb2/V633//fb766ismTpxIkSJF2LBhAx06dCBfvnxUqlTpnq9l4cKFdO/enV9++YUtW7bQpk0bqlevTs2aNbEsi5YtW5I+fXrWrl1LVFQUnTt3pn379vz0008ALF68mKFDhzJu3DgqV67M3LlzGTduHAULFkzQ62TLsrhy5Ypb+lx8hIeHkzZtWqpUqeL6e3PTAyWRVjICWF999dU921SuXNnq0qXLHceWLVtmeXl5WZGRkfF6nsuXL1uAdfny5YeONSHsP7vfqjuvrsVALAZiZfs0m7V472K7w0qyIiMjreXLl8f79y7yKG72t5C/Q6zAMYEWA7EyfJLB+vbAt3aHJilUavgbd+PGDWv//v3WjRs3XMeuRlx1/T+Y2B9XI67GO/YlS5ZYmTNntnx9fa1nn33W6tu3r7V79+472tx+XTNx4kQra9asd7zWqVOnWoAVEhJiWZZlrV271gKsNWvWuNqsWLHCAu74vn8rVqyYNW7cONfj/PnzW6NHj473a+nUqZNVqFAh69SpU1Z0dHS8vy82Bw8etLy9va1z585ZlmVZX331lRUQEHDHeXPlymUNHTrU9djpdFp58+a1GjRoEOd5z549awHWnj17LMuyrCNHjlhArOcZNmyYZVm3fp4XL16841xVq1a1unbt6npcsmRJ68MPP3Q97tu3r1WuXDnX44CAAGv+/Pl3nGPw4MFWhQoV4oy3ZcuWVoMGDaxz585ZadKksY4cOWIdPXrU8vX1tc6dO2c1aNDAatmypWVZlnX16lXL19fX2rx58x3naNu2rdWkSZP7vpZKlSrdcaxcuXJW7969LcuyrFWrVlmenp7W8ePHXV/ft2+fBVjbtm2zLMuyKlSoYHXs2PGOczz99NNWqVKl4nx97hAdHW1dvHjxkftcfMX29+amB8kNkny1wAdVoUKFu4ZuV61aRdmyZZP9nb2gx4JY0XQFPzT7gWKPFeP89fNk9M1od1gicpsnHnuCbW9so2r+qlyJvMJLC15i+M/DXSPoIpI6NGzYkJMnT/LNN99Qu3Zt1q1bx1NPPRVngYIDBw5QsmTJO+6Yly9fPta2JUuWdH1+c7nD2bNnAVNluVevXhQrVoxMmTLh5+fH77//zvHjxx/qdXz66acsWLCAJUuW3HU3/3Z+fn6uj44dO8bZbvr06dSuXZts2bIBULduXa5du8aaNWsAM6Xy1KlTrqIfYKaHli1b9o7zHDp0iKZNm7pGT26fDni72M4TGhoaz1dvNGvWjHnz5gFmNGXBggU0a9YMgHPnznHixAnatm17x8/go48+4tChQ/c9d7Zs2ahXrx6zZ89m5syZ1KtXz/WzuWn//v2Eh4dTs2bNO55jzpw58XqO2/sLmD5zs7+EhoYSEBBAQECA6+s3+87Nn1NoaOgdP0fgrsdyS5KfFnj16lX+/PNWRYIjR46wa9cusmTJQr58+ejbty9///03c+bMAaBjx46MHz+eHj168MYbb7BlyxamT5/OggUL7HoJble7cG12F9xN8B/B1Cp0q3jH0v1LKfZYMYIeC7IxOhHJli4bq/67ireD32bKzin0WtOLvef2MvnFyfh6xX1xIiL3l847HVf7XrXtuR+Er68vNWvWpGbNmvTv35927doxYMAAWrVqdVdby7LiXNbwb7ffLL75PTcX/L/77rusXLmSESNGULhwYdKmTcurr776UGvWRowYwSeffMKaNWsoWbLkPadG7dq1y/V5XFPFoqOjmTNnDqdPn76jim90dDTTp0+/qyDZvdSvX5+AgACmTp1K7ty5iYmJoXjx4vF6nQ86xaxp06b06dOHnTt3cuPGDU6cOOGqcHjz5z516lSefvrpO77v30UR4tKmTRs6d+4MwOeff37X128+x4oVK8iTJ88dX7vXlNOb/j244HA4XOeMrd/d67i1C+MBAAAgAElEQVTcX5JPrrZv30716tVdj2/OP75ZnvLUqVN33KUIDAwkODiY7t278/nnn5M7d27Gjh2bLMuw34uXhxcvPf6S6/GZq2do/XVrrjuv06lcJwZUHUDWdFltjFAkdfPx9GHSi5MokaME3X7oxpzdc/jjwh8se30ZOf1y2h2eSLLlcDhI75Pe7jAeSrFixeLc1+o///kP8+bNIyIiwnXBvH379gd+jo0bN9KqVSteeeUVwNykPnr06AOfZ/jw4Xz00UesXLmSsmXL3rdaW+HChe97zuDgYK5cuUJISMgdicfvv/9Os2bNuHDhAlmzZiVXrlz88ssvVKlSBTBbXezYsYOnnnoKgAsXLhAaGsrkyZOpXLkyAJs2bYr1OWM7z81ExsfHBzDJ3b3kzZuXKlWqMG/ePG7cuEGNGjVcxdNy5MhBnjx5OHz4sGs060G98MILrqSwdu3ad329WLFipEmThuPHj1O1atVYzxHf1xLbuY8fP86JEydco1f79+/n8uXLBAWZm/VBQUH88ssvtGjRwvV9v/zyywM9T2qS5JOratWq3XM6TWzD61WrVmXnzp0JGFXSExkdyXOBz/H1ga8Zt20cc3+by4CqA+hUrpNKQovYxOFw0Ll8Zx7P+jivLXmNLX9tofzU8nzd+GuezPWk3eGJSAK5cOECjRo1ok2bNpQsWZIMGTKwfft2Pv30Uxo0aBDr9zRt2pR+/frRvn17+vTpw/HjxxkxYgTwYCMthQsXZtmyZdSvXx+Hw8EHH3zwwGWsP/30Uz744APmz59PgQIFOH36tKvE96MUMJg+fTr16tWjVKlSdxx/4okn6NatG3PnzqVr16507dqVoUOHUqRIEYKCghg1ahSXLl1ytc+cOTNZs2ZlypQp5MqVi+PHj99R/e52NyspBgUFMXr0aC5evEibNm0AyJ8/Pw6Hg++++466deuSNm1aVyGMf2vWrBkDBw4kMjKS0aNH3/G1gQMH0qVLF/z9/alTpw4RERFs376dixcv3lEwLS6enp6uKXixjXZlyJCBnj170r17d2JiYqhUqRJhYWFs3rwZPz8/WrZs+UCv5XY1atSgZMmSNGvWjDFjxhAVFUWnTp2oWrWqaypm165dadmyJWXLlqVSpUrMmzePffv2UbBgwfuePzVKcWuuUquAjAEsb7ycNf9dQ8kcJbkYfpFuK7tRYmIJvjv4ndZ7iNioZqGabG23laJZi3Ii7ASVZlZi6f6ldoclIgnEz8+Pp59+mtGjR1OlShWKFy/OBx98wBtvvMH48eNj/R5/f3++/fZbdu3aRenSpenXrx/9+/cHuOdap38bPXo0mTNn5tlnn6V+/frUrl3bNeITXxMmTCAyMpJXX32VXLlykStXLvLkyRNn7PFx5swZVqxYEetMIofDwf/93/8xffp0AN555x1atGhBq1atqFChAhkyZHCNxIGpdrhw4UJ27NhB8eLF6d69O8OHD4/1eYcOHcqwYcMoVaoUGzdu5Ouvv3atacqTJw+DBg2iT58+5MiRwzWiFZtGjRpx4cIFrl+/zssvv3zH19q1a8e0adOYNWsWJUqUoGrVqsyaNcu1Diw+/P3975m4Dh48mP79+zNkyBCCgoKoXbs23377res5HuS13M7hcLB8+XIyZ85MlSpVqFGjBgULFmTRokWuNq+//jr9+/end+/elClThmPHjvHmm2/G+7WlNg5LV913CQsLI2PGjFy+fNn2UuwPIzommhkhM3h/7fucvXYWLw8v/nz7T/Jnym93aInK6XQSHBxM3bp1k30xE0n64tPfLoVf4vUlr7Pq0CoABlUbxAdVPtC8dnkoqeFvXHh4OEeOHCEwMPCBEoyUYt68ebRu3ZrLly+7Npm1S0xMDGFhYfj7++PhkfTvzR89epTAwEBCQkIoXbq03eHIQ0jsPnevvzcPkhsk/XeHPDBPD0/eKPMGf7z9B70r9qbHMz3uSKyuRV6zMTqR1CuTbyZWNF1B16e7AjBg3QAaL21s2549IpK0zJkzh02bNnHkyBGWL19O7969ee2112xPrEQk/pRcpWD+afwZWmMow2oOcx3bdXoXAaMDGP7zcCKiImyMTiR18vLwYswLY5hafyreHt4s3reYyjMr81fYX3aHJiI2O336NM2bNycoKIju3bvTqFEjpkyZYndYIvIAlFylMlN3TOVi+EV6relFsQnFWBa6TOuxRGzQ7ql2rGmxhmzpsrHz1E7KTS3H1r+22h2WiNioV69eHD161DU9afTo0aRL92Dl38UoUKAAlmVpSqAkOiVXqcy4uuOY2WAmufxycfjiYRoubkj12dUJORVid2giqU6V/FXY1m4bxbMX5/TV01SdVZV5v82zOywRERF5SEquUhkPhwetSrfi4NsHeb/y+/h6+bL+2HrKTClDz1U97Q5PJNUJzBzI5jabqV+0PhHRETT/qjl91/Qlxnqw0skiIiJiPyVXqZSfjx+DnxvMgc4HaFK8CRYWBTIVsDsskVQpQ5oMLG+8nD4VzT4tQ38eyiuLXuFKxBWbIxMREZEHoeQqlcuXMR/zG85nW7ttdCjTwXV85Z8rWbR3kdZjiSQSD4cHQ2oM4YtXviCNZxq+OfANFWdU5Oilo3aHJiIiIvGk5EoAKJenHN6eZp+UiKgI3gp+i8ZLG1NpZiW2/b3N5uhEUo/mJZuzvtV6cvrlZM/ZPZSbWo4NxzbYHZaIiIjEg5IruYuFRctSLUnnnY7NJzbz9LSn+e9X/1WpaJFE8nTep/n1jV95KtdTnL9+nhpzajB953S7wxIREZH7UHIld/H18uWDqh9wsPNBWpRqAcDc3+ZSdFxRBq4bqE2IRRJBXv+8bGy9kUbFGuGMcdLu23Z0/6E7UTFRdocmIm7icDhYvnx5oj9vgQIFGDNmTKI/rx2qVatGt27d7A7DbdatW4fD4eDSpUsJcn67+uS/VatWje7du7v9vAMHDkzw8vxKriROefzzMPvl2Wxrt42KARW5EXWDQesH8fOJn+0OTSRVSOedjkWvLmJQtUEAjNk6hhfnv8il8IT5T1VE3Ofs2bN06NCBfPnykSZNGnLmzEnt2rXZsmWLq82pU6eoU6eOjVHGburUqVSuXJnMmTOTOXNmatSowbZt7lkisHbtWqpXr06WLFlIly4dRYoUoWXLlkRFmRtHs2bNIlOmTA983riSjmXLljF48OCHjvfw4cM0adKE3Llz4+vrS968eWnQoAEHDx4E4OjRozgcDnbt2vXQz5GctGrVCofDQceOHe/6WqdOnXA4HLRq1Sre50voZNEOSq7kvsrlKcfG1htZ/Opi2j/VnlqFarm+dvbaWRsjE0n5HA4H/av258tGX5LWKy0rD63kmWnPcPDCQbtDE5F7aNiwIbt372b27NkcPHiQb775hmrVqvHPP/+42uTMmZM0adLYGGXs1q1bR5MmTVi7di1btmwhX758vPDCC5w8efKRzrtv3z7q1KlDuXLl2LBhA3v27GHcuHF4e3sTE5Mw209kyZKFDBkyPNT3RkZGUrNmTcLCwli2bBkHDhxg0aJFFC9enMuXL7s50sQTGRn5SN8fEBDAwoULuXHjhutYeHg4CxYsIF++fI8aXrKn5ErixeFw0OiJRkyuP9l17Oy1sxQdV5TGSxpz7NIxG6MTSfleLfYq/8/encfllP7/A3+d9j2NUlFoIiRbtMgoDImRYjKNpWw1trGO9cvYl9EYsmtQImtkG2uMIomQQSVGTJZCDSppP78//NyfaWRoprvT8no+Hj0e3ec+51yv07mk933Oua7zw87DRMcESRlJsNtkh1PJp6SORUSlePHiBaKiorB06VJ07twZDRo0gK2tLWbMmIEvvvhCtt7fb8GKjo5G69atoaamhnbt2uHAgQMlroq8/ZT/9OnTaNeuHTQ0NODg4ICkpCTZPu7evQs3NzcYGhpCS0sLNjY2OHWqbL8rtm/fjtGjR6N169Zo2rQpNm7ciOLiYpw9+98G1wkPD4exsTH8/PxgZWUFc3NzuLi4YNOmTVBRUUFERASGDh2Kly9fQhAECIKAuXPnAgBCQkLQrl07aGtrw8jICAMGDMDTp28+4L1//z46d+4MANDT0ytx9eTvtwXm5eVh6tSpMDU1haqqKho3bozNm0t/pjUhIQHJyclYt24d7O3t0aBBA3To0AGLFi2CjY0NAMDMzAwA0KZNGwiCgE6dOgEAYmNj0a1bN+jr60NXVxdOTk64evVqif0LgoBNmzahT58+sqt4hw4dKrHO0aNHYWFhAXV1dXTu3Bn3798v8X5GRgb69+8PExMTaGhooEWLFti5c2eJdTp16oRvv/0WkyZNgr6+Prp16wYAuHPnDhwdHaGmpgZLS0uEh4d/6BQCAKytrVG/fn2EhYXJloWFhcHU1BRt2rQpsa4oivDz88Onn34KdXV1tGrVCnv37gXwz+cNAIqLizF79mzo6+vDyMhI1hfeSklJgZubG7S0tKCjo4OvvvoKT548KbHODz/8AENDQ2hra2P48OHIzc39qGP8L1hc0b928u5JZOZlYnf8bjRZ0wQzT8/kvDxEctTGuA1ifWNhb2KPF7kv4BLigjWX1nDKBKqRXuW/eu9XbmHuR6/7uuD1R61bFlpaWtDS0sKBAweQl5f3UdtkZWXB1dUVLVq0wNWrV7FgwQJMmzat1HVnzpyJn376CZcvX4aSkhKGDRsmey87Oxs9e/bEqVOnEBcXh+7du8PV1RUpKSllOoa/ysnJQUFBwb+6Xe+vjIyMkJqa+t4izcHBAf7+/tDR0UFqaipSU1MxefJkAG+utixYsAC//fYbDhw4gHv37sn+EDc1NcW+ffsAAElJSUhNTcXKlStLbcPb2xu7du3CqlWrkJiYiA0bNkBLS6vUdQ0MDKCgoIC9e/eiqKio1HXe3i556tQppKamygqOrKwsDB48GOfOnUNMTAwaN26Mnj17Iiur5N9J8+bNw1dffYXr16+jZ8+eGDhwoOzq5oMHD9C3b1/07NkT165dg4+PD6ZPn15i+9zcXLRt2xa//PILbt68iW+++QZeXl64ePFiifWCg4OhpKSE8+fPIyAgAMXFxejbty8UFRURExODDRs2vLe/lWbo0KEICgqSvQ4MDCzRD9+aNWsWgoKCsH79esTHx2PixIkYNGgQIiMjP3jetm7dCk1NTVy4cAF+fn6YP3++rAAURRHu7u74888/ERkZifDwcNy9exeenp6y7ffs2YM5c+Zg0aJFuHz5MoyNjbFu3bqPPsZ/TaR3vHz5UgQgvnz5UuoolV5capzYaUsnEXMhYi5Eo2VG4uarm8XCokKpo4n5+fnigQMHxPz8fKmjUA1Qkf3tdcFr0Xu/t+zf3YjDI8T8QvbzmqYm/I57/fq1mJCQIL5+/fqd9972/9K+em7vWWJdjUUa713XKcipxLr6fvqlrldWe/fuFfX09EQ1NTXRwcFBnDFjhvjbb7+VPAZA3L9/vyiKorh+/Xqxdu3aJY5148aNIgAxLi5OFEVRPHPmjAhAPHXqlGydI0eOiABK/Rm9ZWlpKa5evVr2ukGDBuKKFSs++lhGjx4tmpubi6mpqWJRUdFHb/d3hYWF4pAhQ0QAopGRkeju7i6uXr26xN9bQUFBoq6u7gf3denSJRGAmJWVJYri/342z58/L7Gek5OTOH78eFEURTEpKUkEIIaHh3905jVr1ogaGhqitra22LlzZ3H+/Pni3bt3Ze/fu3evxDn6p2PX1tYWDx8+LFsGQJw1a5bsdXZ2tigIgnjs2DFRFEVxxowZYrNmzcTi4mLZOtOmTSv1OP+qZ8+e4nfffSd77eTkJLZu3brEOidOnBAVFRXFBw8eyJYdO3asRJ8szeDBg0U3Nzfx2bNnoqqqqnjv3j3x/v37opqamvjs2TPRzc1NHDx4sOx41NTUxOjo6BL7GD58uNi/f39RFP/5vH322Wfi8+fPZX3OxsZGnDZtmiiKonjy5ElRUVFRTElJkW0THx8vAhAvXbokiqIotm/fXhw5cmSJ/drZ2YmtWrUq9dj+6fdNWWoDXrmi/6S1UWv86v0r9nvuh7meOdKy0zD80HC039weBUUFUscjqpbUlNSwxW0L/Lr6QYCAgCsBcA5xRkZOhtTRiOj/+/LLL/H48WMcOnQI3bt3R0REBKytrbFly5ZS109KSkLLli2hpqYmW2Zra1vqui1btpR9b2xsDACyW+RevXqFqVOnwtLSErVq1YKWlhZu3br1r69c+fn5YefOndi7d2+JbH/39mqdlpZWqYMdAICioiKCgoLw8OFD+Pn5oW7duli0aBGaN2+O1NTUf8wRFxcHNzc3NGjQANra2rLb78pyXNeuXYOioiKcnJw+epsxY8YgLS0NISEhaN++PUJDQ9G8efMP3kL39OlTjBw5EhYWFtDV1YWuri6ys7PfyfvXc6mpqQltbW3ZuUxMTIS9vT0EQZCt0759+xLbFxUVYdGiRWjZsiVq164NLS0tnDx58p122rVrV+J1YmIi6tevDxMTk/fu+5/o6+vjiy++QHBwMIKCgvDFF19AX1+/xDoJCQnIzc1Ft27dSvSPrVu34u7dux9so0WLFiVeGxsbl/jZmJqawtTUVPb+2z6fmJgoW+fvx1SWY/y3lOTeAlV7giDAvak7ejTqgTWX1mDB2QWwq2cnm5SYiMqfIAiY0mEKmhk0Q/99/RFxPwK2m2xx6OtDaF6nudTxiOQue0b2e99TVFAs8frp5PcPvqQglPyc+f74+/8p11+pqamhW7du6NatG2bPng0fHx/MmTOn1NHURFEs8Uf022WlUVb+3/+vb7d5OyDElClTcOLECSxbtgyNGjWCuro6PDw8/tUgBsuWLcPixYtx6tQptGzZEpmZme9d96+j5eno6PzjfuvVqwcvLy94eXlh4cKFsLCwwIYNGzBv3rxS13/16hWcnZ3h7OyMkJAQGBgYICUlBd27dy/Tcamrq3/0un+lra2N3r17o3fv3li4cCG6d++OhQsXyp5dKs2QIUPw7Nkz+Pv7o0GDBlBVVUX79u3fyfvXcwm8OZ9vz+X7zv9f/fTTT1ixYgX8/f3RokULaGpqYsKECe+0o6mpWeJ1afv+e//7kGHDhuHbb78FAKxdu/ad998ex5EjR1CvXr0S733MQC4f+tmUlvd9yysSiysqN6pKqvjO4Tt4t/KGksL/utb1J9cRcj0EMzvOhK6aroQJiaqfXha9EDM8Bq47XZH8PBntN7fHji93oJdFL6mjEcmVpormh1eS87plZWlp+d45hJo2bYrt27cjLy9P9ofn5cuXy9zGuXPnMGTIEPTp0wfAm2ew/j4Iwsf48ccfsXDhQpw4cQLt2rX74Gh+jRo1KnMbwJuBDIyNjfHq1Zvn2lRUVN55vunWrVtIT0/HDz/8ILtS8fefjYqKCgC899ko4M2VkOLiYkRGRqJr167/Kq8gCGjatCmio6P/sd1z585h3bp16NmzJ4A3z0+lp6eXqa3S+ktMTMw77bi5uWHQoEEA3hQ0d+7cQbNmzT6475SUFDx+/Bh169YFgBLTBHwMFxcXWRHXvXv3UttQVVVFSkrKe68Wfsx5K83b/A8ePJD1iYSEBLx8+VJ27M2aNUNMTAy8vb1l2/395ycPvC2Qyp2BpgH01PUAvPkEYdKJSfgx+kc0Xt0YAZcDOAkqUTlrXqc5LvleglMDJ2TlZ6H3zt748fyPHOiCSCIZGRno0qULQkJCcP36ddy7dw+hoaHw8/ODm5tbqdsMGDAAxcXF+Oabb5CYmCi7+gSU7YpCo0aNEBYWhmvXruG3336T7bcs/Pz8MGvWLAQGBqJhw4ZIS0tDWloasrPff7XwYwQEBGDUqFE4efIk7t69i/j4eEybNg3x8fFwdXUF8GaC4+zsbJw+fRrp6enIyclB/fr1oaKigtWrVyM5ORmHDh16Z+6qBg0aQBAE/PLLL3j27FmpWRs2bIjBgwdj2LBhskExIiIisGfPnlLzXrt2DW5ubti7dy8SEhLw+++/Y/PmzQgMDJSdxzp16kBdXR3Hjx/HkydPZEO0N2rUCNu2bUNiYiIuXryIgQMHlvnK2ciRI3H37l1MmjQJSUlJ2LFjxzu3lTZq1Ajh4eGIjo5GYmIiRowYgbS0tA/uu2vXrmjSpAm8vb3x22+/4dy5c5g5c2aZ8ikqKiIxMRGJiYlQVFR8531tbW1MnjwZEydORHBwMO7evYu4uDisXbsWwcHBAD7uvL0vf8uWLTFw4EBcvXoVly5dgre3N5ycnGS3QI4fPx6BgYEIDAzE7du3MWfOHMTHx5fpGP8NFlckd5PaT0JT/aZ4lvMMI4+MRJuANgi/+3HDfRLRx9HX0MdJr5P4xvobiBAx9dRUDDk45J1R04hI/rS0tGBnZ4cVK1bA0dERVlZW+P777+Hr64s1a9aUuo2Ojg4OHz6Ma9euoXXr1pg5cyZmz54NAP/4rNPfrVixAnp6enBwcICrqyu6d+8Oa2vrMuVft24d8vPz4eHhAWNjYxgbG6NevXrvzf6xbG1tkZ2djZEjR6J58+ZwcnJCTEwMDhw4ILuy4eDggJEjR8LT0xMGBgbw8/ODgYEBtmzZgtDQUFhaWuKHH36QFZ5v1atXD/PmzcP06dNhaGgou13t79avXw8PDw+MHj0aTZs2ha+vr+yq2d+ZmJigYcOGmDdvHuzs7GBtbY2VK1di3rx5skJESUkJq1atQkBAAOrWrSsrugIDA/H8+XO0adMGXl5eGDduHOrUqVOmn1f9+vWxb98+HD58GK1atcKGDRuwePHiEut8//33sLa2Rvfu3dGpUycYGRnB3d39g/tWUFDA/v37kZeXB1tbW/j4+GDRokVlyge86bf/dBvoggULMHv2bCxZsgTNmjVD9+7dcfjwYdkQ9h973v7u7TQGenp6cHR0RNeuXfHpp59i9+7dsnU8PT0xe/ZsTJs2DW3btsUff/yBUaNGlfkYy0oQ+dHmOzIzM6Grq4uXL19+8L5h+jgFRQXYcHkD5kTMwfPc5wDe3M60rNsyNNFvIp82Cwpw9OhR9OzZ8537donKW2Xpb6IoYm3sWkw4PgFFYhHam7RHmGcYjLSMJMtE8lFZ+pw85ebm4t69ezAzMytTgVFdbN++XTbv0799Xqi8FBcXIzMzEzo6OlBQ4GfzJH8V3ef+6fdNWWoD/uugCqGsqIyxdmPx+7jfMd5uPJQUlPDL7V9w4u4JqaMRVSuCIOBb229xbOAx1FKrhQsPL8B2oy3iUuOkjkZEH7B161ZERUXh3r17OHDgAKZNm4avvvpK8sKKiD4eiyuqUJ+ofwJ/F3/cHHUTI9uOxKh2/7s8m/w8mcO3E5WTbubdcNHnIixqW+BB5gN8FvQZ9iXskzoWEf2DtLQ0DBo0CM2aNcPEiRPRr18//Pzzz1LHIqIyYHFFkmii3wTre62XDdeeX5QPlxAXtNzQEsfuHJM4HVH1YFHbAhd9LsLZ3Bk5BTnwCPXA/Mj5HOiCqJKaOnUq7t+/L7s9acWKFdDQ0JA6FhGVAYsrqhRupd/C89znuJV+Cz139IRLiAvin8p/RBei6q6WWi0cGXAE4+3GAwDmRMzB1/u+Rk5BjsTJiIiIqh8WV1QptDRsid/H/o4pDlOgrKCME3dPoNWGVhhzZAzSc8o2LwQRlaSkoAR/F39sdN0IZQVl7InfA8cgRzzMfCh1NCIiomqFxRVVGrpquvDr5oeEMQno07QPisQirLu8Do1WNULKyxSp4xFVeT7WPjjlfQr6Gvq4knoFNhttcPHhRaljEX1QWedpIiIqq/K6ZV6pXPZCVI4afdIIYZ5hiLgfgUknJsFA0wCmOqZSxyKqFhwbOOKSzyX03tUbN5/ehNMWJ2zuvRkDWw6UOhrRO1RUVKCgoIDHjx/DwMAAKioqZZpQl8pPcXEx8vPzkZuby6HYqUJUZJ8TRRHPnj2DIAj/eWoLFldUaXVq2AmxvrF4kftC9p/ps1fP4HvYF/M7z0dLw5YSJySqmsz0zBA9LBoDwwbi8O3DGLR/EG4+vYlFny+CgsA/mqjyUFBQgJmZGVJTU/H48WOp49Rooiji9evXUFdXZ4FLFaKi+5wgCDAxMYGiouJ/2g+LK6rUFBUUUVujtuz1vMh5OJh0EIdvH8bwNsOxoPMCGGoZSpiQqGrSVtXGfs/9mPXrLPxw/gf8cP4HJKQnIKRPCLRVtaWORySjoqKC+vXro7CwEEVFRVLHqbEKCgpw9uxZODo6VttJq6lyqeg+p6ys/J8LK4DFFVUxkx0mIz0nHbvjd2Pj1Y3YdXMXZnacifH246GmpPbhHRCRjKKCIpZ0XYLmdZrD55APDiUdQofADjjU/xAa1moodTwimbe36vCPeukoKiqisLAQampqPA9UIapqn+P9H1SlNKzVELs8diFqaBRs6togKz8L009Ph+VaS4Qlhkkdj6hKGtRyECKGRMBQ0xA3nt6AzUYbnPvjnNSxiIiIqhwWV1QldajfATE+MdjqvhX1tOvh3ot7+PXer1LHIqqy7E3sEesbC2tja6TnpOPzrZ9j89XNUsciIiKqUlhcUZWlICjAq5UXkr5NwoLOCzC301zZe8nPk/E4iw8/E5WFqa4pzg09h36W/VBQXACfwz6YeHwiCosLpY5GRERUJbC4oipPU0UTsxxnQV9DH8Cb0WVG/jISlhsssTttN3IKciROSFR1aChrYLfHbszrNA8A4H/RH7129MKL3BcSJyMiIqr8WFxRtZOVn4Xs/GzkFORgZ9pOWG2wwo4bO8ptcjii6k4QBMx2mo3QfqFQV1LHibsnYL/JHncy7kgdjYiIqFJjcUXVjo6qDs4PO49tbttgoGyAh1kPMTBsINpvbo+YhzFSxyOqMjwsPXB+2HmY6JggKSMJtptscSr5lNSxiIiIKi0WV1QtCYIAz+aeWNNsDeY5zYOmsmod0e4AACAASURBVCYuPrqI9pvb4+ido1LHI6oy2hi3QaxvLOxN7PEi9wVcQlyw9tJaXgkmIiIqBYsrqtZUFVQxo8MM3Bl7B0NbD0VT/abo+mlXqWMRVSlGWkY4M/gMvFp6oUgswrfHvsWoI6NQUFQgdTQiIqJKhcUV1QjG2sYIdAvElW+uQEVRBQBQUFSALsFdsOXaFhSLxRInJKrc1JTUEOweDL+ufhAgIOBKAJxDnJGRkyF1NCIiokqDxRXVKBrKGrLvg64F4cz9Mxh6cChsN9py0lSiDxAEAVM6TMGh/oegpaKFiPsRsN1ki/in8VJHIyIiqhRYXFGNNbjVYPh19YO2ijaupF6B4xZH9Avth3vP70kdjahS62XRCxeGX4BZLTMkP09G+83tceT2EaljERERSY7FFdVYqkqqmNJhCu6MvYNvrL+BgqCAvQl70XRtU0w/NZ0TpxL9A6s6VrjkewlODZyQlZ8F152u+PH8jxzogoiIajQWV1TjGWoZIsA1ANdGXMPnZp8jvygfV1OvQlFQlDoaUaWmr6GPk14n4WvtCxEipp6aiqEHhyKvME/qaERERJJgcUX0/7UwbIFwr3Ac+voQVnRfAUEQAADpOen49d6vEqcjqpxUFFUQ0CsAq1xWQVFQRPBvwegc3Blp2WlSRyMiIqpwLK6I/kIQBLg2cUXzOs1ly+ZGzMXnWz+H+y533Mm4I2E6ospJEASMtRuLYwOPoZZaLVx4eAG2G20RlxondTQiIqIKxeKK6B+IoghlBWUoCoo4mHQQzdc1x3cnvsOL3BdSRyOqdLqZd8NFn4uwqG2BB5kP8FnQZ9iXsE/qWERERBWGxRXRPxAEAStcVuD6qOvo0agHCooLsDxmORqtaoR1ses46AXR31jUtkDM8Bg4mzsjpyAHHqEeWBC5gANdEBFRjVAliqt169bBzMwMampqaNu2Lc6d++f5iLZv345WrVpBQ0MDxsbGGDp0KDIyONEl/XuWBpY4OvAojg08hmb6zZDxOgNjjo7BwrMLpY5GVOnoqevhyIAjGG83HgAwO2I2vt73NXIKciRORkREJF+VvrjavXs3JkyYgJkzZyIuLg4dO3ZEjx49kJKSUur6UVFR8Pb2xvDhwxEfH4/Q0FDExsbCx8engpNTdeTSyAXXR13Hmh5rYK5njjE2Y2TvFYvFEiYjqlyUFJTg7+KPn3v9DCUFJeyJ3wPHIEc8ynwkdTQiIiK5qfTF1fLlyzF8+HD4+PigWbNm8Pf3h6mpKdavX1/q+jExMWjYsCHGjRsHMzMzfPbZZxgxYgQuX75cwcmpulJSUMIY2zFI+jYJBpoGsuVuu9ww7tg4ZOTwKinRW75tfXHa+zT0NfRxJfUK2m1sh4sPL0odi4iISC4qdXGVn5+PK1euwNnZucRyZ2dnREdHl7qNg4MDHj58iKNHj0IURTx58gR79+7FF198URGRqQZRVPjfPFixj2Lxy+1fsPrSajRe3Rj+Mf7IL8qXMB1R5eHYwBGXfC7Bqo4V0rLT4LTFCduvb5c6FhERUblTkjrAP0lPT0dRUREMDQ1LLDc0NERaWulzqDg4OGD79u3w9PREbm4uCgsL0bt3b6xevfq97eTl5SEv73+TXmZmZgIACgoKUFBQUA5HQlJ4e+4q4hy2rtMax/sfx+RTk3Hz2U1MPDER62LXwe9zP/Rs1FM2ZxZVXxXZ36oiEy0TRHpFwvuQN47cOYJB+wfh+pPrmO80HwpCpf6cr9Jin6OKxP5GFa0y9bmyZBDESjyE0+PHj1GvXj1ER0ejffv2suWLFi3Ctm3bcOvWrXe2SUhIQNeuXTFx4kR0794dqampmDJlCmxsbLB58+ZS25k7dy7mzZv3zvIdO3ZAQ0Oj/A6Iqr0isQin/zyN7anb8bLwJQCglVYrTGgwAXrKehKnI5JekViEHak7sO/pmyHabXVsMbHBRKgrqkucjIiIqHQ5OTkYMGAAXr58CR0dnX9ct1IXV/n5+dDQ0EBoaCj69OkjWz5+/Hhcu3YNkZGR72zj5eWF3NxchIaGypZFRUWhY8eOePz4MYyNjd/ZprQrV6ampkhPT//gD5Aqr4KCAoSHh6Nbt25QVlau0LYz8zLxQ/QPWHVpFerr1Me1b65BRVGlQjNQxZKyv1VF229ux8gjI5FXlAcrAyuE9QtDw1oNpY5VpbDPUUVif6OKVpn6XGZmJvT19T+quKrUtwWqqKigbdu2CA8PL1FchYeHw83NrdRtcnJyoKRU8rAUFd88G/O+OlJVVRWqqqrvLFdWVpb8ZNJ/J8V5rK1cGz86/4hRNqPw9NVTaKppAgAKigqwOW4zhrYeClWld/scVX38vfFxhrQZgqYGTeG+yx03n92EwxYHhH0Vho4NOkodrcphn6OKxP5GFa0y9LmytF/pb3SfNGkSNm3ahMDAQCQmJmLixIlISUnByJEjAQAzZsyAt7e3bH1XV1eEhYVh/fr1SE5Oxvnz5zFu3DjY2tqibt26Uh0G1VCf6n0KexN72ev1l9dj1JFRsFxnif2J+zmxKtVo9ib2iPWNhbWxNdJz0vH51s+x+Wrpt28TERFVBZW+uPL09IS/vz/mz5+P1q1b4+zZszh69CgaNGgAAEhNTS0x59WQIUOwfPlyrFmzBlZWVujXrx+aNGmCsLAwqQ6BSMZQ0xDGWsZIfp6Mvnv6onNwZ8Slxkkdi0gyprqmODf0HPpZ9kNBcQF8Dvtg4vGJKCwulDoaERFRmVX64goARo8ejfv37yMvLw9XrlyBo6Oj7L0tW7YgIiKixPpjx45FfHw8cnJy8PjxY4SEhKBevXoVnJroXZ5Wnrg99jZmdZwFNSU1RP4RibY/t8Xwg8ORmpUqdTwiSWgoa2C3x27M6/RmYCH/i/7otaMXXuS+kDgZERFR2VSJ4oqoOtFS0cKCLguQ9G0S+lv1hwgRgdcCMeKXEVJHI5KMIAiY7TQbof1Coa6kjhN3T8B+kz3uZNyROhoREdFHY3FFJJH6uvWx48sdiB4WDQdTByzsslD2Xm5hLp/HohrJw9ID54edh4mOCZIykmC3yQ6nkk9JHYuIiOijsLgiklh70/aIGhqFloYtZcumhk9Fx6COiH0UK2EyImm0MW6DWN9Y2JvY43nuc7iEuGDtpbX8wIGIiCo9FldElYAgCLLvX+a+xNbftuL8g/Ow3WQL7/3eeJj5UMJ0RBXPSMsIZwafgVdLLxSJRfj22LcYfWQ0CooKpI5GRET0XiyuiCoZXTVdxI+Ox+BWgwEA265vg8VqC8yLmIecghyJ0xFVHDUlNQS7B8Ovqx8ECNhwZQOcQ5yRkZMhdTQiIqJSsbgiqoTq6dTDFvctiPWNxWf1P8PrwteYGzkXFqstcOHBBanjEVUYQRAwpcMUHOp/CFoqWoi4HwHbTbaIfxovdTQiIqJ3sLgiqsTa1W2Hs0POYo/HHjSs1RBZ+Vkw/8Rc6lhEFa6XRS9cGH4BZrXMkPw8Ge03t8eR20ekjkVERFQCiyuiSk4QBPRr3g+JYxJxctBJ1NGsI3tvadRS3H9xX7pwRBXIqo4VLvleglMDJ2TlZ8F1pyuWRS/jQBdERFRpsLgiqiLUlNRgZ2Ine3389+OYfno6mq5pipmnZyIrL0vCdEQVQ19DHye9TsLX2hciREwJn4KhB4cirzBP6mhEREQsroiqKhMdE3Ru2Bl5RXlYHLUYFmssEBQXhGKxWOpoRHKloqiCgF4BWOWyCoqCIoJ/C0bn4M54kv1E6mhERFTDsbgiqqKs6ljhtPdpHPA8AHM9c6Rlp2HYoWFo93M7RN6PlDoekVwJgoCxdmNxbOAx1FKrhQsPL8Bmow3iUuOkjkZERDUYiyuiKkwQBLg1dUP86Hgs67YMuqq6iEuLw/BDw1FYXCh1PCK562beDRd9LsKitgUeZD7AZ0GfYV/CPqljERFRDcXiiqgaUFVSxXcO3+HO2DsY3W40ljkvg5KCEgCgoKgAL3NfSpyQSH4salsgZngMnM2dkVOQA49QDyyIXMCBLoiIqMKxuCKqRgw0DbD2i7Vwb+ouWxZwJQCNVzfGhssbeDWLqi09dT0cGXAE4+3GAwBmR8xG/339OfE2ERFVKBZXRNWYKIrYHb8bz3KeYdSRUWgT0Abhd8OljkUkF0oKSvB38cfPvX6GkoISdsfvhmOQIx5lPpI6GhER1RAsroiqMUEQ8Kv3r1jlsgp6anq4+fQmnEOc4brTFUnpSVLHI5IL37a+OO19Gvoa+riSegU2G21w6dElqWMREVENwOKKqJpTVlTGWLux+H3c7xhvNx5KCkr45fYvsFpvhYDLAVLHI5ILxwaOuORzCVZ1rJCanQrHIEfsuLFD6lhERFTNsbgiqiE+Uf8E/i7+uDnqJnpZ9EJRcVGJSYmJqhszPTNED4uGq4Ur8oryMDBsIP7v9P9xLjgiIpIbFldENUwT/SY43P8wbo6+idZGrWXLf4r+CUfvHOUIa1StaKtqY7/nfkzvMB0AsCRqCfru7ousvCyJkxERUXXE4oqohrI0sJR9n5SehOmnp+OLHV+gx/YeiH8aL2EyovKlqKCIJV2XYFufbVBVVMXBpIPoENgB91/clzoaERFVMyyuiAhGWkaYYDcBygrKOHH3BFptaIUxR8YgPSdd6mhE5WZQy0GIGBIBQ01D3Hh6AzYbbXDuj3NSxyIiomqExRURQVdNFz86/4iEMQno07QPisQirLu8Do1WNcLyC8uRX5QvdUSicmFvYo9Y31i0MWqD9Jx0fL71c2y+ulnqWEREVE2wuCIimUafNEKYZxjODD6D1kat8TLvJeZGzMXz18+ljkZUbkx1TXFu6Dn0s+yHguIC+Bz2waQTkzjJNhER/WcsrojoHZ0adsJl38vY5LoJft38YKhlKHsv+XmyhMmIyoemiiZ2e+zGvE7zAAArYlag145eeJH7QuJkRERUlbG4IqJSKSooYrj1cIxsN1K2LPxuOBqvboxvDn+DJ9lPJExH9N8JgoDZTrMR2i8U6krqOHH3BOw32eNOxh2poxERURXF4oqIPlrE/QgUi8XYeHUjGq9ujKVRS5FbmCt1LKL/xMPSA1HDomCiY4KkjCTYbbLDqeRTUsciIqIqiMUVEX20RZ8vwrmh59Cubjtk5Wdh+unpaLa2GULjQzk/FlVp1sbWiPWNhb2JPZ7nPodLiAvWXlrLfk1ERGXC4oqIyuSz+p/hos9FbHXfirradXH/xX18tfcreB/wljoa0X9ipGWEM4PPwKulF4rEInx77FuMPjIaBUUFUkcjIqIqgsUVEZWZgqAAr1ZeuP3tbcxxmgN1JXW4N3GXOhbRf6ampIZg92As7boUAgRsuLIBziHOyMjJkDoaERFVASyuiOhf01TRxNxOc5E8Phl9m/WVLQ+MC8SCyAXIKciRMB3RvyMIAqZ2mIpD/Q9BS0ULEfcjYLvJFgnPEqSORkRElRyLKyL6z4y0jCAIAgDgZe5LTA2fitkRs9F0TVPsuLGDz61QldTLohcuDL8As1pmSH6eDPtN9jhy+4jUsYiIqBJjcUVE5UpHVQdre65Ffd36eJD5AAPDBsIh0AExD2OkjkZUZlZ1rHDJ9xKcGjghKz8LrjtdsSx6GT8wICKiUrG4IqJyJQgCPK08cWvMLSzsvBCaypqIeRiD9pvbY2DYQDzMfCh1RKIy0dfQx0mvk/C19oUIEVPCp2DowaHIK8yTOhoREVUyLK6ISC7UldUx03Em7oy9g6Gth0KAgJ03duLZq2dSRyMqMxVFFQT0CsAql1VQEBQQ/FswOgd35mTaRERUAosrIpIrY21jBLoF4vI3l/Fjtx/RxriN7L3Ljy+jWCyWMB3RxxMEAWPtxuL4wOOopVYLFx5egM1GG1xLuyZ1NCIiqiRYXBFRhbA2tsZ3Dt/JXt/OuI32m9vDdqMtolKiJExGVDbdzLvhos9FWNS2wIPMB+gQ2AFhiWFSxyIiokqAxRURSSLhWQLUldRxJfUKOgZ1RL/Qfrj3/J7UsYg+ikVtC8QMj4GzuTNyCnLw5Z4vsSByAQe6ICKq4VhcEZEk3Ju64/dxv2NE2xFQEBSwN2Evmq5tiumnpiMzL1PqeEQfpKeuhyMDjmC83XgAwOyI2ei/rz/ndyMiqsHkWlz9/vvvOHHiBF6/fg0A/ESPiEqoo1kHG3ptwLUR19D1067IL8rH0vNL0fbntigsLpQ6HtEHKSkowd/FHz/3+hlKCkrYHb8bjkGOeJT5SOpoREQkAbkUVxkZGejatSssLCzQs2dPpKamAgB8fHzw3XfffWBrIqppWhi2wMlBJ3G4/2FY1LbAsNbDoKSgJHUsoo/m29YXp7xOobZ6bVxJvQKbjTa49OiS1LGIiKiCyaW4mjhxIpSUlJCSkgINDQ3Zck9PTxw/flweTRJRFScIAnpZ9MKNUTcwqf0k2fJTyafgvssddzLuSJiO6MOcGjoh1jcWVnWskJqdCscgR+y4sUPqWEREVIHkUlydPHkSS5cuhYmJSYnljRs3xh9//CGPJomomlBRVIGqkiqAN7cSTzs1DQeTDqL5uub47sR3eJH7QuKERO9npmeG6GHRcLVwRV5RHgaGDcTM0zM55QARUQ0hl+Lq1atXJa5YvZWeng5VVVV5NElE1ZAgCAjpE4IejXqgoLgAy2OWo9GqRlgXu47PZFGlpa2qjf2e+zG9w3QAwOKoxei7uy+y8rIkTkZERPIml+LK0dERW7dulb0WBAHFxcX48ccf0blzZ3k0SUTVVDODZjg68CiODTyGZvrNkPE6A2OOjkGrDa0QeT9S6nhEpVJUUMSSrkuwrc82qCqq4mDSQXQI7ID7L+5LHY2IiORILsXVjz/+iICAAPTo0QP5+fmYOnUqrKyscPbsWSxdulQeTRJRNefSyAXXR13Hmh5rUFu9NhKeJeDpq6dSxyL6R4NaDkLEkAgYahrixtMbsNlow0mziYiqMbkUV5aWlrh+/TpsbW3RrVs3vHr1Cn379kVcXBzMzc3l0SQR1QBKCkoYYzsGd8bewUqXlfCw9JC9F5UShYycDAnTEZXO3sQesb6xaGPUBuk56egS3AWbr26WOhYREcmBXMY6TklJgampKebNm1fqe/Xr15dHs0RUQ+ip62Gc3TjZ65e5L9Fndx8UFhdijtMcjLYZDRVFFQkTEpVkqmuKc0PPYejBoQhNCIXPYR/EP4uHXzc/TjtARFSNyOXKlZmZGZ49e/bO8oyMDJiZmcmjSSKqwVKzU1FXuy5e5L7AxBMT0WJ9CxxOOsyJy6lS0VTRxG6P3ZjX6c0HjytiVsB1pyte5r6UOBkREZUXuRRXoihCEIR3lmdnZ0NNTU0eTRJRDdZUvymufnMVP/f6GXU06+B2xm303tUbziHOuPHkhtTxiGQEQcBsp9kI7RcKdSV1HP/9OOw323MeNyKiaqJc70WYNOnNxJ+CIOD7778vMRx7UVERLl68iNatW5dnk0REAN6Mzubb1heeVp5YfG4xVsSswKnkU7D+2Rr3xt+DiY7Jh3dCVEE8LD3wqd6ncNvlhlvpt2C3yQ57+u1B10+7Sh2NiIj+g3ItruLi4gC8uXJ148YNqKj875kHFRUVtGrVCpMnTy7PJomIStBR1cEPXX/AN22/wbRT06ClolWisHrflXWiimZtbI1Y31j02d0HMQ9j4BLigpUuKzHGdozU0YiI6F8q19sCz5w5gzNnzmDw4ME4duyY7PWZM2dw4sQJBAQEoHHjxmXe77p162BmZgY1NTW0bdsW586d+8f18/LyMHPmTDRo0ACqqqowNzdHYGDgvz0sIqqCPtX7FKH9QrHRdaNs2e9//o7m65ojLDGMz2NRpWCkZYQzg8/Aq6UXisQifHvsW4z6ZRQKigqkjkZERP+CXJ65CgoKgo6OTrnsa/fu3ZgwYQJmzpyJuLg4dOzYET169EBKSsp7t/nqq69w+vRpbN68GUlJSdi5cyeaNm1aLnmIqGr560hsS84tQWJ6Ir7c8yU6B3dGXGqchMmI3lBTUkOwezCWdl0KAQI2XNkA5xBnTi1ARFQFyW3819jYWISGhiIlJQX5+fkl3gsLC/vo/SxfvhzDhw+Hj48PAMDf3x8nTpzA+vXrsWTJknfWP378OCIjI5GcnIxPPvkEANCwYcN/fyBEVG2s7LESdbXrYtmFZYj8IxJtf26LIa2HYFGXRTDWNpY6HtVggiBgaoepsDSwRP99/RFxPwK2m2xxuP9hWBpYSh2PiIg+klyKq127dsHb2xvOzs4IDw+Hs7Mz7ty5g7S0NPTp0+ej95Ofn48rV65g+vTpJZY7OzsjOjq61G0OHTqEdu3awc/PD9u2bYOmpiZ69+6NBQsWQF1dvdRt8vLykJeXJ3udmZkJACgoKEBBAW/NqKrenjueQ3pLVVDF7I6zMaTlEMw8MxO7E3Yj6FoQ9sTvwVynuRhvO/5f75v9jcpDd7PuOOt9Fl/u/RLJz5Nhv8keIe4h6NGoxzvrss9RRWJ/o4pWmfpcWTLIpbhavHgxVqxYgTFjxkBbWxsrV66EmZkZRowYAWPjj/90OD09HUVFRTA0NCyx3NDQEGlpaaVuk5ycjKioKKipqWH//v1IT0/H6NGj8eeff773uaslS5aUOuHxyZMnS4x4SFVTeHi41BGoEuqv0h9tGrdB4KNA3M65jWs3r+Fo+tH/vF/2NyoP80zmYWnBUsS/iof7HncMrjsYbgZupQ7Gwj5HFYn9jSpaZehzOTk5H72uIMrhqW5NTU3Ex8ejYcOG0NfXx5kzZ9CiRQskJiaiS5cuSE1N/aj9PH78GPXq1UN0dDTat28vW75o0SJs27YNt27demcbZ2dnnDt3DmlpadDV1QXw5jZEDw8PvHr1qtSrV6VduTI1NUV6enq5PTtGFa+goADh4eHo1q0blJWVpY5DlVSxWIx9ifvQq3EvqCu/+f0Q+zgWAGBT1+aj98P+RuUtvygf40+Mx+ZrmwEAXi28sK7HOqgqqQJgn6OKxf5GFa0y9bnMzEzo6+vj5cuXH6wN5HLl6pNPPkFWVhYAoF69erh58yZatGiBFy9elKny09fXh6Ki4jtXqZ4+ffrO1ay3jI2NUa9ePVlhBQDNmjWDKIp4+PBhqaMVqqqqQlVV9Z3lysrKkp9M+u94HulDBrQaIPu+qLgIo46NwvUn1zGo5SAs+XxJmebIYn+j8qKsrIyNvTeilVErTDgxAdtubMPdF3cR9lUYDLUMS6zHPkcVhf2NKlpl6HNlaV8uowV27NhRdgnvq6++wvjx4+Hr64v+/fvj888//+j9qKiooG3btu9cDgwPD4eDg0Op23To0AGPHz9Gdna2bNnt27ehoKAAExNOIkpE/yynIAetjd5Mdh5yPQQWqy0wN2IuXuW/kjgZ1USCIGCs3VgcH3gctdRqIfpBNGw22uBa2jWpoxERUSnkUlytWbMGX3/9NQBgxowZmDx5Mp48eYK+ffti8+bNZdrXpEmTsGnTJgQGBiIxMRETJ05ESkoKRo4cKdu/t7e3bP0BAwagdu3aGDp0KBISEnD27FlMmTIFw4YNe++AFkREb2mraiPYPRiXfC6hg2kHvC58jXmR89BkTRNs+20bisViqSNSDdTNvBsu+lyERW0LPMh8gA6BHbD/1n6pYxER0d/Ipbj65JNPULdu3TcNKChg6tSpOHToEJYvXw49Pb0y7cvT0xP+/v6YP38+WrdujbNnz+Lo0aNo0KABACA1NbXEnFdaWloIDw/Hixcv0K5dOwwcOBCurq5YtWpV+R0gEVV7NvVscG7oOezx2IMGug3wKOsRvA944/jvx6WORjWURW0LxAyPgbO5M3IKcuAZ5ok9aXs4ITYRUSUit3muSnP16lXMnj0bv/zyS5m2Gz16NEaPHl3qe1u2bHlnWdOmTSvFyCJEVLUJgoB+zfvBtYkr/GP8EflHZIkhsfOL8qGiqCJhQqpp9NT1cGTAEUw+ORkrL67EjrQdKDxYiCD3IGgoc3RbIiKplfuVq/DwcEyZMgX/93//h+TkZADArVu34O7uDhsbGxQWFpZ3k0REcqWmpIbpn03H0QFHZUNhv8x9icarG2Pm6ZnIysuSOCHVJEoKSvB38cf6HuuhCEXsSdgDxyBHPMp8JHU0IqIar1yLq+DgYHTv3h1BQUH44YcfYG9vj5CQENja2kJPTw+//fYbjh/nLTVEVDX9dY6hnTd3IuVlChZHLYbFGgsE/xbM57GoQg1vMxzzGs1DbfXauJJ6BTYbbXDp0SWpYxER1WjlWlytWLECixcvRnp6Onbt2oX09HSsWLECcXFxCAoKgpWVVXk2R0QkmRFtR+CA5wGY65kjLTsNvkd8Mfn2ZFx/el3qaFSDWGlZIXpoNKzqWCE1OxWOQY7YcWOH1LGIiGqsci2u7t69C09PTwCAh4cHFBUVsXz5cpibm5dnM0REkhMEAW5N3RA/Oh7Lui2Drqoukl8n47Mtn+HnKz9zkAGqMGa1zBA9LBquFq7IK8rDwLCBmHl6Jq+kEhFJoFyLq1evXkFTU/PNjhUUoKamBlNT0/JsgoioUlFVUsV3Dt8hfmQ82uq0RW5hLsKTOaAOVSxtVW3s99yP6R2mAwAWRy1G3919kZ2f/YEtiYioPJX7aIEnTpyArq4uAKC4uBinT5/GzZs3S6zTu3fv8m6WiEhSdTTrYKbZTDw0egjv1t4lns8iqgiKCopY0nUJLA0s4XPYBweTDqJDYAcc/PogGtZqKHU8IqIaodyLq8GDB5d4PWLEiBKvBUFAUVFReTdLRCQ5BUEBI9uOhLKyMgBAFEV4H/CGg4kDRrYbyYKLKoRXKy80rt0Y7rvccf3JddhstMF+z/34rP5nUkcjIqr2yvW2wOLi4g9+sbAiopril9u/IOR6CEYfHY2v932Nl7kvpY5ENYS9iT1ifWPRxqgN0nPS0SW4CwLjAqWORURU7ZX7GJoThAAAIABJREFUPFdERPRGL4te+Mn5JygpKGFP/B60/bktrjy+InUsqiFMdU1xbug5eFh6oKC4AMMPDcekE5NQWMz5JomI5IXFFRGRnAiCgEntJyFqaBQa6DbA3ed34RDogDWX1nA0QaoQmiqa2O2xG3Od5gIAVsSsgOtOV15FJSKSExZXRERyZmdih7gRcXBv6o78onyMPTYWY4+NlToW1RAKggLmdJqD0H6hUFdSx/Hfj8N+sz3uZNyROhoRUbXD4oqIqALoqesh7KswrHRZCXUldXg295Q6EtUwHpYeiBoWBRMdE9xKvwW7TXY4nXxa6lhERNUKiysiogoiCALG2Y3D/Qn30bFBR9nyhGcJvE2QKoS1sTVifWNhb2KP57nP0T2kO9ZeWit1LCKiakNuxdWLFy+wadMmzJgxA3/++ScA4OrVq3j06JG8miQiqhLqaNaRfZ/wLAE2G23QZ3cf/Pn6TwlTUU1hpGWEM4PPwKulF4rEInx77FuMPjIaBUUFUkcjIqry5FJcXb9+HRYWFli6dCmWLVuGFy9eAAD279+PGTNmyKNJIqIq6caTGygsLsTBpINoE9AGMQ9jpI5ENYCakhqC3YOxtOtSCBCw/vJ6dA/pjoycDKmjERFVaXIpriZNmoQhQ4bgzp07UFNTky3v0aMHzp49K48miYiqJE8rT1wYfgHmeuZIeZmCjkEdsSx6GYrFYqmjUTUnCAKmdpiKg18fhJaKFs7cPwPbTbZIeJYgdTQioipLLsVVbGwsRowY8c7yevXqIS0tTR5NEhFVWdbG1rg64io8m3uisLgQU8KnwG2XG68iUIVwbeKKC8MvwKyWGZKfJ8N+kz2O3jkqdSwioipJLsWVmpoaMjMz31melJQEAwMDeTRJRFSl6ajqYOeXO7Hhiw1QVVTFL7d/QcCVAKljUQ1hVccKl3wvwbGBI7Lys9BrRy8si17GgVaIiMpILsWVm5sb5s+fj4KCNw/HCoKAlJQUTJ8+HV9++aU8miQiqvIEQcCIdiNw0eciBrcajKkdpkodiWoQfQ19hHuFw9faFyJETAmfgqEHhyKvME/qaEREVYZciqtly5bh2bNnqFOnDl6/fg0nJyc0atQI2traWLRokTyaJCKqNloZtcIW9y1QUlACAOQV5uG7E9/h2atnEiej6k5FUQUBvQKwymUVFAQFBP8WjC5bu+BJ9hOpoxERVQlK8tipjo4OoqKi8Ouvv+Lq1asoLi6GtbU1unbtKo/miIiqtZm/zsTymOXYFb8Lu77cVWKOLKLyJggCxtqNRRP9Jvgq9CtEP4iGzUYbHOp/CK2NWksdj4ioUpPrJMJdunTB5MmTMXXqVBZWRET/0uBWg9FUvykeZz1Gp+BOWHR2EUcTJLlzNnfGRZ+LsKhtgQeZD9AhsAPCEsOkjkVEVKnJpbgaN24cVq1a9c7yNWvWYMKECfJokoio2mph2AKxvrHwbuWNYrEYs87MgkuIC56+eip1NKrmmug3QczwGDibOyOnIAdf7vkSC88u5EAXRETvIZfiat++fejQocM7yx0cHLB37155NElEVK1pqWgh2D0YQW5BUFdSR3hyOFptaMVJh0nu9NT1cGTAEYyzHQcA+P7M9xgQNgCvC15LnIyIqPKRS3GVkZEBXV3dd5br6OggPT1dHk0SEdUIQ1oPweVvLsPSwBI5BTkw0OD0FiR/SgpKWNljJX7u9TOUFJSw6+YuOG5xxKPMR1JHIyKqVORSXDVq1AjHjx9/Z/mxY8fw6aefyqNJIqIaw9LAErG+sTg56CTMPzGXLeeVBJI337a+OOV1CrXVa+Py48uw2WiDS48uSR2LiKjSkEtxNWnSJEydOhVz5sxBZGQkIiMjMXv2bEyfPh0TJ06UR5NERDWKhrIG7EzsZK9P3j0J81XmOJ18WsJUVBM4NXRCrG8smhs0R2p2Kpy2OGHnjZ1SxyIiqhTkUlwNGzYMP/30EzZv3ozOnTujc+fOCAkJwfr16+Hr6yuPJomIajS/835IzU5Ft23dMOfMHBQVF0kdiaoxMz0zRA+PhquFK3ILczEgbABmnp7JUSyJqMaT21Dso0aNwsOHD/HkyRNkZmYiOTkZ3t7e8mqOiKhGO9T/EHza+ECEiPln56Prtq54nPVY6lhUjemo6mC/535M7zAdALA4ajH67u6L7PxsiZMREUlHrvNcAYCBgQG0tLTk3QwRUY2moayBjb03Ynvf7dBS0ULE/Qi03tAaJ++elDoaVWOKCopY0nUJtrpvhYqiCg4mHUSHwA7448UfUkcjIpKEXIqrJ0+ewMvLC3Xr1oWSkhIUFRVLfBERkXwMaDEAV765glaGrfAs5xlcQlwQlxondSyq5rxaeSFySCQMNQ1x/cl12Gy0QVRKlNSxiIgqnJI8djpkyBCkpKTg+++/h7GxMQRBkEczRERUCovaFojxicHE4xORU5iDNsZtpI5ENYC9iT1ifWPhtssNcWlx6BLcBRt6bcCwNsOkjkZEVGHkUlxFRUXh3LlzaN26tTx2T0REH6CmpIb1vdaXGNgiIycDlx9fRvdG3SVMRtWZqa4pzg09hyEHh2Bvwl4MPzQc8U/j4dfND4oKvHOFiKo/udwWaGpqClEU5bFrIiIqg7d/0BaLxRh8YDBctrtgWvg0FBQVSJyMqitNFU3s9tiNuU5zAQDLY5aj185eeJn7UtpgREQVQC7Flb+/P6ZPn4779+/LY/dERFRGRcVFaFirIQDAL9oPnYI7IeVlirShqNpSEBQwp9MchPYLhbqSOo7/fhz2m+1xJ+OO1NGIiORKLsWVp6cnIiIiYG5uDm1tbXzyySclvoiIqGIpKypjTc81CO0XCh1VHUQ/iEabgDY4nHRY6mhUjXlYeiBqWBRMdExwK/0W7DbZcaJrIqrW5PLMlb+/vzx2S0RE/5GHpQesja3hudcTlx9fRu9dvfFd+++w5PMlUFZUljoeVUPWxtaI9Y1Fn919EPMwBt1DumNVj1UYbTNa6mhEROVOLsXV4MGD5bFbIiIqB5/qfYqooVGYdmoaVl5cibDEMMxynIVairWkjkbVlJGWEc4MPoNvDn+Dbde3YczRMbj59CZWuqxkUU9E1YrcJhG+e/cuZs2ahf79++Pp06cAgOPHjyM+Pl5eTRIR0UdSVVKFv4s/9nvux26P3ailxsKK5EtNSQ3B7sFY2nUpBAhYf3k9uod0R0ZOhtTRiIjKjVyKq8jISLRo0QIXL15EWFgYsrOzAQDXr1/HnDlz5NEkERH9C+5N3WFTz0b2OuByACYcn4D8onwJU1F1JQgCpnaYioNfH4SWihbO3D8Du012SHiWIHU0IqJyIZfiavr06Vi4cCHCw8OhoqIiW965c2dcuHBBHk0SEdF/lJadhgknJmDlxZXoENgByc+TpY5E1ZRrE1dcGH4BZrXMcPf5XdhvssfRO0eljkVE9J/Jpbi6ceMG+vTp885yAwMDZGTw8j8RUWVkpGWEPR578In6J7j8+DLaBLTBvoR9UseiasqqjhUu+V6CYwNHZOVnodeOXvgp+ifOk0lEVZpciqtatWohNTX1neVxcXGoV6+ePJokIqJy4NrEFXEj4uBg6oDMvEx4hHpg7NGxyCvMkzoaVUP6GvoI9wqHr7UvRIiYHD4Zww4NY38joipLLsXVgAEDMG3aNKSlpUEQBBQXF+P8+fOYPHkyvL295dEkERGVk/q69RExOAJTHaYCANbEroHjFkcUFBVInIyqIxVFFQT0CsAql1VQEBSw5doWdNnaBU+yn0gdjYiozORSXC1atAj169dHvXr1kJ2dDUtLSzg6OsLBwQGzZs2SR5NERFSOlBWVsbTbUhwZcAS11WvD1cKVQ2aT3AiCgLF2Y/H/2Lvv8Jzux//jzztbErElVGSovULsrYiiqJpFrRhBa1V9qLZWUZ2hNWpTtUvaRozQ2pvEqk1QEmpGhMz794df8/n6CKXu5ETyelxXrss5ed/nvO7c70ReOec+Z22nteSwz8HOSzupMrsKh6IOGR1NROS5pMl9rmxtbfnxxx8ZN24cBw8eJDk5mQoVKlC0aNG02J2IiKSRpkWbcrTfUfI55ktZd+nOJfI55cPBxsHAZJIZ+RXxY0/PPbRY2oJTN05RY24NFrVaRKuSj7+PW0QkI0qz+1wBeHt706ZNG1q3bs29e/e4detWWu5ORETSgJuzG9ZW1gDcT7hPs8XNqDa7GqdunDI4mWRGxfMWZ7f/bvyK+BGbEMtby9/i062f6kIXIvJSSJNyNWjQIObMmQNAUlISdevWpWLFiri7u7N58+a02KWIiKSD0zdPExUTxaGrh/Cd6cviI4uNjiSZUK5suVjTcQ0DqgwA4OPfP6bjqo7cT7hvcDIRkadLk3K1cuVKypcvD8Cvv/7KuXPnOHHiBIMGDWLkyJFpsUsREUkH5VzLER4QTl2PusTEx9BpVSd6/9pbv/SKxdlY2TC5yWRmvjETGysblh5dSp35dbgcfdnoaCIiT5Qm5er69eu4ubkBEBISQrt27ShWrBj+/v4cOXIkLXYpIiLppGD2gmzsspGP63yMCROzDs6i6uyqnLh+wuhokgn18u3Fxnc2kidbHvZf2U/lWZXZe3mv0bFERFKVJuXK1dWVP/74g6SkJNatW0fDhg0BiI2NxdraOi12KSIi6cjGyoax9cey4Z0NuDq5cuTaEQatG2R0LMmk6nrWZV+vfZTOV5rImEjqzq/LkiNLjI4lIvKYNClX3bt3p127dpQpUwaTyUSjRo0A2LNnDyVKlHju7U2bNg0vLy8cHBzw9fVl27Ztz/S4HTt2YGNjg4+Pz3PvU0RE/llD74aEB4TTplQbZjWfZXQcycS8cnmx038nzYs150HiAzqu6shHv31EsjnZ6GgiIinSpFyNHj2a2bNn07t3b3bs2IG9vT0A1tbWDB8+/Lm2tWzZspT3aoWFhVG7dm2aNGnCxYsXn/q4O3fu0KVLFxo0aPCvn4eIiPwzN2c3VrRdgXsO95R1X+/6mmPXjhmYSjIjF3sXVrdfzfCaD3+XGL9tPK2XtyYmPsbgZCIiD6XZpdjbtGnD4MGDyZs3b8q6rl270rJly+faztdff42/vz89e/akZMmSBAYG4u7uzvTp05/6uD59+tCxY0eqV6/+r/KLiMi/E3wqmPc3vE/lWZWZHz7f6DiSyVhbWTOx4UQWvrkQO2s7gk4EUXNuTS7cvmB0NBGRtLmJcFJSEhMmTGDGjBlcvXqVU6dO4e3tzccff4ynpyf+/v7PtJ34+HgOHDjw2NEuPz8/du7c+cTHzZs3j7Nnz7Jo0SI+/fTTf9xPXFwccXFxKcvR0dEAJCQkkJCQ8ExZJeP5+7XTayjpQfPtv3zy+dDQqyEbz2+k+8/d2XRuE1MaT8HZztnoaJlKVp9zHUp1wCuHF21WtuHw1cNUnlWZ5a2XU9O9ptHRMqWsPt8k/WWkOfc8GdKkXI0fP54FCxbw+eef06tXr5T1ZcuW5ZtvvnnmcnX9+nWSkpJwdXV9ZL2rqytRUVGpPub06dMMHz6cbdu2YWPzbE9v4sSJjBkz5rH1GzZswNHR8Zm2IRlXaGio0REkC9F8e6ifSz9c3VxZErWERUcWsfnUZoZ6DsUzm6fR0TKdrD7nPvX4lInnJ3Iu9hyNFjUioFAADfM0NDpWppXV55ukv4ww52JjY595bJqUq4ULFzJz5kwaNGhAQEBAyvpy5cpx4sTzX6rXZDI9smw2mx9bBw+PmHXs2JExY8ZQrFixZ97+iBEjGDJkSMpydHQ07u7u+Pn54eLi8tx5JWNISEggNDSURo0aYWtra3QcyeQ03x73Bm/Q42IP3gl6hz9j/mT42eFMbTKVd8q+Y3S0TEFz7r/axLfBP9ifVSdW8d2l77ApYMPE1yZibaUrFFuK5pukt4w05/4+q+1ZpEm5unz5Mq+++upj65OTk5/rsFrevHmxtrZ+7CjVtWvXHjuaBXD37l32799PWFgY7777bso+zWYzNjY2bNiwgddee+2xx9nb26dcdOP/srW1NfzFlBen11HSk+bbo14r8hrhAeF0CerCujPrcLZ31tfHwjTnIKdtTla0W8G4LeMYvWU0gXsDOXHzBEtbLyWHQw6j42Uqmm+S3jLCnHue/afJBS1Kly6d6uXSV6xYQYUKFZ55O3Z2dvj6+j52ODA0NJQaNWo8Nt7FxYUjR44QHh6e8hEQEEDx4sUJDw+natWqz/9kRETkheRzyseajmtY12kd7Uq3S1kflxj3lEeJPB8rkxWj6o1ieZvlZLPJxroz66g2pxqnb5w2OpqIZCFpcuRq1KhRvPPOO1y+fJnk5GRWrVrFyZMnWbhwIcHBwc+1rSFDhvDOO+9QqVIlqlevzsyZM7l48WLK6YYjRozg8uXLLFy4ECsrK8qUKfPI4/Pnz4+Dg8Nj60VEJP1Ymaxo/GrjlOWomCiqza7G8FrD6ePbJ9VTvUX+jbal21IkdxFaLm3JiesnqDq7KivarqCBt27NIiJpL02OXDVv3pxly5YREhKCyWTik08+4fjx4/z6668pNxR+Vu3btycwMJCxY8fi4+PD1q1bCQkJwcPDA4DIyMh/vOeViIhkLDP2z+DCnQv0XdOXt396m+i4Zz+fXeSfVCxQkb0991L1larcenCLxosaM23fNKNjiUgWYPFylZSUxJYtW6hSpQpbtmwhJiaG2NhYtm/fjp+f37/aZr9+/YiIiCAuLo4DBw5Qp06dlM/Nnz+fzZs3P/Gxo0ePJjw8/F/tV0RE0sYndT/hi0ZfYGNlw7Jjy/Cd6UtYZJjRsSQTKZC9AJu7beadcu+QZE6if0h/+q3pR0KS8Zd1FpHMy+LlytramsaNG3P79m1Lb1pERDIJK5MVQ2sMZVv3bRTOUZgzN89QbU41pu6ditlsNjqeZBIONg4seHMBkxpOwoSJ6fun03hRY27E3jA6mohkUmlyWmDZsmU5d+5cWmxaREQykWqFqhHWJ4wWxVsQnxTPu2vf1elbYlEmk4lhNYfxc4efcbZz5veI36k0qxI/Hv6RxOREo+OJSCaTJuVq/PjxDB06lODgYCIjI4mOjn7kQ0RE5G+5s+UmqH0Q3zT+hrL5y9LVp6vRkSQTal68Obv8d+GV04uI2xF0Xt2ZklNLMi9snk4VFBGLSZNy9frrr3Po0CFatGhBoUKFyJUrF7ly5SJnzpzkypUrLXYpIiIvMZPJxKBqgzjQ+wDOds7AwxvGB50I0mmCYjFl8pchPCCcT+t/Su5suTlz8ww9fulBse+K8f3+73V7ABF5YWlyKfbffvtNl9UVEZHnZmv93xs1frP7G97f8D5vlniTuS3mkiub/jgnL87F3oWRdUYysNpApu+bzpe7viTidgQBawIYt3Ucw2oOo1fFXmSzzWZ0VBF5CaVJuapXr15abFZERLIQBxsH7KztCDoRRFhkGMvaLKNqId0MXizD2c6ZD2p+wLtV3mXWwVl8vuNzLt+9zMB1A5mwbQJDawwloFJAypFUEZFnYdHTAmNjY+nfvz+vvPIK+fPnp2PHjly/ft2SuxARkSyiX+V+7OyxE+9c3ly4c4Fa82rx9a6vdZqgWFQ222wMqDqAswPOMr3ZdDxyeHD13lU+CP0Az0BPxm8dz50Hd4yOKSIvCYuWq1GjRjF//nyaNWtGhw4dCA0NpW/fvpbchYiIZCG+BX052PsgbUu1JTE5kfc3vE/LpS25ef+m0dEkk7G3sSegUgCn3zvN3BZzeTX3q9y4f4OPfv8Iz8mejPp9lOadiPwji5arVatWMWfOHGbOnMmUKVNYs2YNQUFBJCUlWXI3IiKSheRwyMGyNsuY1nQa9tb2rDuzjrM3zxodSzIpW2tbulfozvH+x1nUahEl85bk9oPbjN06Fo9AD4ZvHM61e9eMjikiGZRFy9WlS5eoXbt2ynKVKlWwsbHhypUrltyNiIhkMSaTib6V+7K7525mNZ9F5VcqGx1JMjkbKxs6levE0X5HWdF2BeVdyxMTH8OkHZPwDPRkyPohRN6NNDqmiGQwFi1XSUlJ2NnZPbLOxsaGxETdpE9ERF6cj5vPI/fBOhR1iLeWvcX1WL2/V9KGlcmKNqXaENYnjJ87/EylgpW4n3ifb3Z/g9dkL/qv6c/FOxeNjikiGYRFrxZoNpvp1q0b9vb2KesePHhAQEAATk5OKetWrVplyd2KiEgWZDab6RrUlUNXD7H38l6WtllKrcK1jI4lmZTJZKJF8RY0L9ac9WfXM27rOHZe2sm0/dOYdXAWXct3ZUTtEXjn8jY6qogYyKJHrrp27Ur+/PnJkSNHykfnzp0pWLDgI+tERERelMlkYmGrhRTLU4zLdy9Tb349Jm6bSLI52ehokomZTCZef/V1tnffzm9dfqO+Z30SkhOYHTabYt8Wo8vqLpy4fsLomCJiEIseuZo3b54lNyciIvJU5VzLcaD3Afqu6cuiw4v48LcP2XJhCwtbLSS/U36j40kmZjKZqO9Vn/pe9dlxcQefbvuUdWfW8cPhH1h0eBHtSrdjZO2RlHUta3RUEUlHFj1yJSIikt6c7ZxZ+OZC5rSYQzabbKw/ux6fGT6cv3Xe6GiSRdQsXJO1ndayt+deWhRvgRkzy44to9yMcrRa1oqDkQeNjigi6UTlSkREXnomk4keFXqwt9deSuYtSal8pSico7DRsSSLqfxKZX7u8DPhfcJpW6otJkwEnQjCd6YvzRY3Y/efu42OKCJpTOVKREQyjTL5y7Cv1z6WtlmKtZU1APcT7nM15qrBySQrKe9WnuVtl3O031E6le2ElcmKkNMhVJ9TnYYLG7IlYovREUUkjahciYhIpuJk50Rex7wpy4PXD6b8jPL8dv43A1NJVlQqXykWvbWIE/1P0MOnBzZWNmw6v4l6C+pRZ14dQs+GYjabjY4pIhakciUiIplWTHwM2y9u5+q9qzRc2JDRm0eTlJxkdCzJYormKcqclnM4/d5pAnwDsLO2Y9vFbfgt8qP6nOoEnwpWyRLJJFSuREQk03K2c2Zvr734V/DHjJkxW8bQ6IdGRN6NNDqaZEGeOT2Z/sZ0zg44y8CqA3GwcWDP5T00X9Ic35m+rDq+SrcSEHnJqVyJiEim5mjryOwWs1nUahFOtk78HvE7Pt/7EHo21OhokkUVcilE4OuBRAyM4IMaH+Bk60RYVBitl7em3PRyLDmyREdYRV5SKlciIpIldCrXiQO9D1DOtRzX7l2j46qOxMTHGB1LsjBXZ1c+b/Q5EYMiGFl7JC72Lhz76xgdV3Wk1LRSLAhfQEJSgtExReQ5qFyJiEiWUTxvcXb776aPbx/mtpiLs52z0ZFEyOuYl09f+5QLgy4wtt5Ycjnk4tSNU3T7uRvFvyvOzAMziUuMMzqmiDwDlSsREclSstlmY8YbM2hevHnKurWn17LuzDoDU4lAToecfFz3Yy4MusBnDT4jn2M+zt8+T5/gPrz67at8t/c77ifcNzqmiDyFypWIiGRpl+5cotOqTjT5sQkjNo4gMTnR6EiSxWW3z85/av2HiEERfNP4Gwo4F+DP6D95b+17eE/x5qudX3Ev/p7RMUUkFSpXIiKSpeVzysfbZd4G4LMdn1Fvfj0u3blkcCqRhxdjGVRtEOcGnmNq06m4u7gTFRPF0NCheE72ZOK2iUTHRRsdU0T+D5UrERHJ0hxsHJjabCrL2yzHxd6FHZd24PO9D2tOrTE6mgjwcI72q9yPMwPOMLv5bLxzeXM99jof/vYhnoGejNk8hlv3bxkdU0RQuRIREQGgbem2HOx9EN8Cvty8f5M3lrzBsNBhurmrZBh21nb4V/Tn5LsnWfjmQornKc6tB7cYvWU0HoEefLjpQ/6695fRMUWyNJUrERGR/69I7iLs6LGD96q8B0B0XDQmk8ngVCKPsrGy4Z3y73Cs3zGWtVlG2fxluRt/l4nbJ+I52ZOhG4bqRtkiBlG5EhER+T/sbeyZ0mQKazut5ZvG36Ss1/2GJKOxtrKmXel2hAeEs7r9aioWqEhsQixf7foKr8levBfynt4/KJLOVK5ERERS8fqrr5PNNhsASclJNF3clCHrhxCfFG9wMpFHWZmseLPEm+zvtZ+QjiFUL1SduKQ4vtv3HUWmFKHPr304f+u80TFFsgSVKxERkX+w6fwmNp7byDe7v6H2vNr6RVUyJJPJRJOiTdjRYwcb39lIXY+6JCQnMPPgTIp+W5RuQd04deOU0TFFMjWVKxERkX/gV8SPoPZB5HTIyd7Le6nwfQVWH19tdCyRVJlMJhp4N2Bzt81s7bYVvyJ+JJmTWHBoASWnlqTjTx05du2Y0TFFMiWVKxERkWfQskRLwvuEU61QNe7E3eGt5W8xYO0A4hLjjI4m8kS1PWqzvvN6dvvv5o1ib5BsTmbJ0SWUmV6G1stbExYZZnREkUxF5UpEROQZeeT0YGu3rQytPhSAb/d+S7efuxkbSuQZVC1UlV/f/pWDvQ/SumRrAFYdX0XFmRVpvqQ5ey/vNTihSOagciUiIvIcbK1t+cLvC4LfDuaV7K8wvOZwoyOJPLMKBSqwst1KjvY9yttl3sbKZEXwqWCqzq6K3w9+bLuwzeiIIi81lSsREZF/oVmxZpwdcJbybuVT1v12/jceJD4wMJXIsymdvzSLWy/meP/jdPPphrXJmtBzodSZX4d68+ux6dwm3UBb5F9QuRIREfmX7G3sU/699/JeXl/0OtXnVOf0jdMGphJ5dsXyFGNey3mcfu80vSv2xtbKli0XttDwh4bUnFuTkNMhKlkiz0HlSkRExAJi4mPI4ZCD8KhwKs6syNKjS42OJPLMvHJ58X3z7zk74CzvVXkPBxsHdv25i2aLm1F5VmV+PvkzyeZko2OKZHgqVyIiIhbwmtdrhPcJp45HHWLiY3j7p7cJCA7gfsJ9o6OJPDP3HO5MaTKF8wPP837193ExGvVVAAAgAElEQVS0deRA5AHa/tSWwScHs/yP5SQlJxkdUyTDUrkSERGxkFdcXmFTl018VPsjTJj4/sD3VJtTjZPXTxodTeS5uDm78aXfl0QMjGBErRFkt8vOhQcX6BzUmTLTy/DDoR9ITE40OqZIhqNyJSIiYkE2VjaMe20c6zuvJ79Tfg5fPczaM2uNjiXyr+RzyseEBhM40/8MHdw6kNMhJyeun6BLUBeKf1ec2QdnE58Ub3RMkQxD5UpERCQNNCrSiPA+4YyqO4qBVQcaHUfkheTKlosObh040/8MExtMJK9jXs7dOkevX3tR9NuiTNs3TVfKFEHlSkREJM0UyF6A0fVGYzKZgIcXvWi9vDXH/zpucDKRf8fF3oXhtYYTMTCCr/y+ws3ZjYt3LtI/pD/ek735Ztc3xCbEGh1TxDAqVyIiIunkw00fsur4KirNqsSC8AVGxxH515zsnBhSfQjnBpzj2ybfUsilEJExkQzZMATPQE8mbZ/E3bi7RscUSXcqVyIiIunkw9of0sCrAbEJsXT7uRvdgrpxL/6e0bFE/rVsttl4t8q7nB1wlplvzMQrpxd/xf7F8E3D8Zzsybgt47j94LbRMUXSjcqViIhIOnFzdmN95/WMrTcWK5MVCw4toPKsyhy7dszoaCIvxM7ajl6+vTj57knmt5xPsTzFuHn/Jp9s/gSPQA8++u0jrsdeNzqmSJpTuRIREUlH1lbWfFz3Y37r8hsFnAtw/PpxKs+qzNrTuqKgvPxsrW3p6tOVP/r9wZLWSyidrzTRcdGM3zYez0BPhoUO42rMVaNjiqQZlSsRERED1PWsS3hAOH5F/HCxd6FCgQpGRxKxGGsrazqU6cDhvof5qd1PVHCrwL2Ee3yx8ws8J3sycO1ALkdfNjqmiMWpXImIiBgkv1N+1nZay07/nbg5u6Wsv3L3ioGpRCzHymTFWyXf4kDvAwS/HUzVV6ryIPEBU/ZOwXuKN32D+xJxO8LomCIWo3IlIiJiICuTFd65vFOWlx9bTpEpRZh1YBZms9nAZCKWYzKZaFasGbv8d7Gh8wZqF65NfFI8Mw7MoOi3Renxcw/O3DxjdEyRF/ZSlKtp06bh5eWFg4MDvr6+bNu27YljV61aRaNGjciXLx8uLi5Ur16d9evXp2NaERGRf2/1idU8SHxA7+DedFrVSZezlkzFZDLRqEgjtnbfypZuW2jo3ZDE5ETmhc+j+HfF6byqs+4DJy+1DF+uli1bxqBBgxg5ciRhYWHUrl2bJk2acPHixVTHb926lUaNGhESEsKBAweoX78+zZs3JywsLJ2Ti4iIPL8f3/qRSQ0nYW2yZsnRJfjO9CU8KtzoWCIWV8ejDqHvhLKzx06aFW1GsjmZH4/8SOlppWm7oi2Hog4ZHVHkuWX4cvX111/j7+9Pz549KVmyJIGBgbi7uzN9+vRUxwcGBjJs2DAqV65M0aJFmTBhAkWLFuXXX39N5+QiIiLPz8pkxbCaw9jafSvuLu6cvnmaarOrMX3fdJ0mKJlSdffqBHcM5kDvA7Qq0QozZlb+sRKf731oubQl+y7vMzqiyDOzMTrA08THx3PgwAGGDx/+yHo/Pz927tz5TNtITk7m7t275M6d+4lj4uLiiIuLS1mOjo4GICEhgYSEhH+RXDKCv187vYaSHjTfxNIqu1Vmb4+99FzTkzWn19AvpB/l85encsHKgOacpK/0mG9l85Zl2VvLOHLtCJ/t+IyVx1fyy8lf+OXkL/h5+/FhzQ+p4V4jzfYvGUtG+hn3PBlM5gz8Z7ArV67wyiuvsGPHDmrU+O8304QJE1iwYAEnT578x2188cUXfPbZZxw/fpz8+fOnOmb06NGMGTPmsfWLFy/G0dHx3z8BERGRF2Q2m/nlr1+4nXibrgW7Gh1HJN1cfnCZlVdXsuXWFpJJBqCsc1naubajjHMZTCaTwQklq4iNjaVjx47cuXMHFxeXp47N0Eeu/va/3zxms/mZvqGWLFnC6NGj+fnnn59YrABGjBjBkCFDUpajo6Nxd3fHz8/vH7+AknElJCQQGhpKo0aNsLW1NTqOZHKab5KWmtHskeVL0ZcIPhlM4WuF8fPz05yTNGfUz7he9OLsrbN8sesLfjj8A0dijnAk5gg1CtVgRM0R+Hn7qWRlUhnp/9W/z2p7Fhm6XOXNmxdra2uioqIeWX/t2jVcXV2f+thly5bh7+/PihUraNiw4VPH2tvbY29v/9h6W1tbw19MeXF6HSU9ab5JWktMTqTLz13YcWkH1XJUo2ZSTfI55jM6lmQRRvyMK5G/BHNazmFUvVF8vuNzZh+czc4/d9J8WXMqFazEx3U+pnmx5ipZmVRG+H/1efafoS9oYWdnh6+vL6GhoY+sDw0NfeQ0wf+1ZMkSunXrxuLFi2nWrNkTx4mIiLxsrE3WtCvdDlsrW3bf2U3VuVX1hn/JEgrnKMx3Tb/j3MBzDK42mGw22dh/ZT8tl7bE53sfVhxbQbI52eiYksVl6HIFMGTIEGbPns3cuXM5fvw4gwcP5uLFiwQEBAAPT+nr0qVLyvglS5bQpUsXvvrqK6pVq0ZUVBRRUVHcuXPHqKcgIiJiMSaTiQFVB7ClyxZc7Vw5f/s8NefWJHB3oK4mKFlCwewF+brx10QMimB4zeE42zlz+Oph2q1sR5lpZfjx8I8kJicaHVOyqAxfrtq3b09gYCBjx47Fx8eHrVu3EhISgoeHBwCRkZGP3PPq+++/JzExkf79+1OgQIGUj4EDBxr1FERERCyuUsFKfFXsK1oVb0VCcgKD1w/mzWVvcvvBbaOjiaSL/E75mdhwIhcGXeCTOp+Qwz4Hx68fp/PqzpScWpK5YXNJSDL+SnOStWT4cgXQr18/IiIiiIuL48CBA9SpUyflc/Pnz2fz5s0py5s3b8ZsNj/2MX/+/PQPLiIikoacbZxZ+tZSvmvyHXbWdpy/dR5768ffQyySmeXOlpsx9cdwYdAFxr82njzZ8nDm5hn8f/Gn6LdFmbF/BnGJcf+8IRELeCnKlYiIiKTOZDLRv0p/dvnvYkXbFWSzzQZAsjlZpwlKlpLDIQcf1v6QiEERfNHoC1ydXLlw5wJ91/TFe4o3k3dPJjYh1uiYksmpXImIiGQCFQtUpHje4inLE7dNpMXSFtyIvWFgKpH052znzNAaQzk/8DxTXp/CK9lf4crdKwxaPwivyV58seMLYuJjjI4pmZTKlYiISCbz172/mLh9IsGngqnwfQV2XtppdCSRdJfNNhvvVX2PswPOMqPZDDxzenLt3jWGbRyGR6AHn279lDsPdMEzsSyVKxERkUwmn1M+tvfYTtHcRbkUfYk68+owafskXaZasiR7G3v6VOrDqXdPMa/lPIrmLsrN+zf5+PeP8Qj04JPfP+Hm/ZtGx5RMQuVKREQkE/Jx8+FA7wN0LNuRJHMSwzcNp9niZvx17y+jo4kYwtbalm4+3fij/x/8+NaPlMpXijtxdxi3dRwegR4M3zica/euGR1TXnIqVyIiIplUdvvsLGq1iNnNZ+Ng48C6M+uoNqca8UnxRkcTMYyNlQ0dy3bkSN8jrGi7gvKu5YmJj2HSjkl4BnoyeN1grty9YnRMeUmpXImIiGRiJpMJ/4r+7Ou1jxJ5SzC0+lDsrO2MjiViOCuTFW1KtSGsTxi/dPiFygUrcz/xPoF7AvGa7EW/Nf24cPuC0THlJaNyJSIikgWUyV+Gg70PElApIGXd0WtHdRqUZHkmk4nmxZuzp+ce1nVaR033msQnxTN9/3Re/fZVev7Sk7M3zxodU14SKlciIiJZRDbbbJhMJgBuP7hN8yXN8Znhw+aIzcYGE8kATCYTjV9tzLbu2/i96++85vUaicmJzAmbQ/HvitNldRdOXD9hdEzJ4FSuREREsqAbsTdwtHUkMiaSBgsbMHbLWJKSk4yOJWI4k8lEPc96bOqyiR09dtDk1SYkmZP44fAPlJpaivYr23Pk6hGjY0oGpXIlIiKSBRXJXYS9PffS3ac7yeZkRm0ehd8iP6JiooyOJpJh1HCvQUinEPb12kfL4i0xY2b5seWUm1GOVstaceDKAaMjSgajciUiIpJFOdk5MbflXBa+uRAnWyd+O/8bPjN82HRuk9HRRDKUSgUrEdQhiEMBh2hbqi0mTASdCKLSrEo0/bEpuy7tMjqiZBAqVyIiIlncO+XfYX/v/ZTNX5ar964yec9koyOJZEjlXMuxvO1yjvU7RudynbEyWbH2zFpqzK1Bw4UN2RKxxeiIYjCVKxEREaFE3hLs6bmHYTWGMbflXKPjiGRoJfOV5IdWP3Dy3ZP08OmBjZUNm85vot6CetSZV4cNZzdgNpuNjikGULkSERER4OHVBCc1mkRex7wp695f/z4bzm4wMJVIxvVq7leZ03IOZ947Q99KfbGztmPbxW00XtSYanOqEXwqWCUri1G5EhERkVT99MdPfL37a15f9DojN40kMTnR6EgiGZJHTg+mNZvGuQHnGFh1IA42Duy9vJfmS5pTcWZFfvrjJ5LNyUbHlHSgciUiIiKpalasGQG+AZgxM2H7BF5b8Bp/Rv9pdCyRDOsVl1cIfD2QiIERDKsxDCdbJ8Kjwmmzog3lppdjyZEluuVBJqdyJSIiIqlysHFg+hvTWdp6KdntsrPt4jZ8Zviw9vRao6OJZGiuzq5MajSJC4Mu8FHtj3Cxd+HYX8fouKojJaeWZH74fBKSEoyOKWlA5UpERESeqn2Z9hzsc5AKbhW4cf8GTRc3ZeK2iUbHEsnw8jjmYdxr47gw6ALj6o8jd7bcnL55mu4/d6fYd8WYeWAmcYlxRscUC1K5EhERkX/0au5X2em/k/6V+2PChG9BX6Mjibw0cjrk5KM6HxExMIJJDSeR3yk/Ebcj6BPch1e/fZVv93zL/YT7RscUC1C5EhERkWfiYOPAd02/42i/o/gV8UtZf+3eNQNTibw8sttnZ1jNYZwfeJ7AxoEUzF6QP6P/ZMC6AXhP8earnV8REx9jdEx5ASpXIiIi8lxK5SuV8u+zN89S7NtiDN0wVO8hEXlGjraODKw2kLMDzjKt6TQK5yhMVEwUQ0OH4hnoyYRtE4iOizY6pvwLKlciIiLyr605vYY7cXf4atdX1J5Xmwu3LxgdSeSl4WDjQN/KfTn93mnmtJhDkVxFuHH/BiN/G4lHoAejN4/m1v1bRseU56ByJSIiIv/agKoDWN1+NTkdcrLn8h58vvch6ESQ0bFEXip21nb0qNCDE++e4IdWP1AibwluP7jNmC1j8Aj0YMTGEfx17y+jY8ozULkSERGRF/JmiTcJ6xNG1VeqcvvBbVota8WgdYOIT4o3OprIS8XGyobO5TpztO9RlrdZTjnXctyNv8tnOz7Dc7In769/n8i7kUbHlKdQuRIREZEX5pnTk63dt/J+9fcBmLxnMlP2TDE4lcjLydrKmral2xLWJ4yg9kH4FvAlNiGWr3d/jddkL94NeZdLdy4ZHVNSoXIlIiIiFmFnbceXfl/yS4dfaFykMQOqDjA6kshLzcpkRcsSLdnXax8hHUOoXqg6cUlxTN03lSJTitD7196cu3XO6Jjyf6hciYiIiEU1L96cdZ3XYWdtB0BiciKBuwN1s1SRf8lkMtGkaBN29NjBpi6bqOdZj4TkBGYdnEWxb4vRLagbJ6+fNDqmoHIlIiIiaWzU76MYvH4wNebW4MzNM0bHEXlpmUwmXvN6jd+7/s627ttoXKQxSeYkFhxaQMmpJXn7p7c5eu2o0TGzNJUrERERSVM1C9ckT7Y8HIw8SMXvK7L82HKjI4m89GoVrsW6zuvY03MPzYs1x4yZpUeXUnZ6Wd5a9hZhkWFGR8ySVK5EREQkTTUt2pTwgHBqFa7F3fi7tF/Znr7BfXmQ+MDoaCIvvSqvVOGXt38hrE8YrUu2BmD1idVUnFmRNxa/wZ4/9xicMGtRuRIREZE0V8ilEL93/Z0RtUYAMOPADKrNrsbpG6cNTiaSOfi4+bCy3UqO9j1Kx7IdsTJZseb0GqrNqYbfD35svbDV6IhZgsqViIiIpAsbKxsmNJjAuk7ryOeYj9M3T5OYnGh0LJFMpXT+0vz41o+c6H+C7j7dsbGyIfRcKHXn16Xu/LpsPLcRs9lsdMxMS+VKRERE0lXjVxsTHhDOyrYrKZmvZMr6ZHOygalEMpeieYoyt+VcTr93mj6+fbC1smXrha00+qERNebWYM2pNSpZaUDlSkRERNJdwewFaVK0Scry9ovbqTSzEieunzAwlUjm45nTkxlvzODcwHO8V+U9HGwc2P3nbt5Y8gaVZlVi9fHV+sOGBalciYiIiKHMZjOD1g0iLCoM35m+LDy00OhIIplOIZdCTGkyhfMDzzO0+lCcbJ04GHmQt5a/RfkZ5Vl2dBlJyUlGx3zpqVyJiIiIoUwmE8Edg3nN6zViE2LpGtSVHj/34F78PaOjiWQ6bs5ufOH3BRGDIviw1odkt8vO0WtH6fBTB0pPK83CQwv1XsgXoHIlIiIihnNzdmND5w2MqTcGK5MV88LnUWV2FY5dO2Z0NJFMKa9jXsY3GM+FQRcYU28MuRxycfLGSboGdaX4d8WZfXA28UnxRsd86ahciYiISIZgbWXNJ3U/YVOXTbg5u/HHX39QeVZlvQ9LJA3lypaLT+p+QsSgCCY2mEhex7ycu3WOXr/24tUprzJ171Tdk+45qFyJiIhIhlLPsx7hfcJp5N2IZsWaUTxPcaMjiWR6LvYuDK81nIiBEXzt9zUFnAtwKfoS7659F+/J3nyz6xudqvsMVK5EREQkw3F1dmVd53UseHMBJpMJgDsP7nD02lGDk4lkbk52TgyuPphzA8/xXZPvcHdxJzImkiEbhuA12YvPtn/G3bi7RsfMsFSuREREJEOyMlnhaOsIPLyiYK9fe1F5VmVmH5yt+/OIpDEHGwf6V+nPmQFnmNV8Ft65vPkr9i9GbBqBR6AHY7eM5faD20bHzHBUrkRERCTDu594n5j4GB4kPqDXr73ovLqz/noukg7srO3oWbEnJ989yYI3F1A8T3FuPbjFqM2j8Aj0YOSmkVyPvW50zAxD5UpEREQyPEdbR4I7BvNZg8+wNlmz+MhiKs2qxKGoQ0ZHE8kSbKxs6FK+C8f6HWNp66WUyV+G6LhoJmyfgGegJx9s+IComCijYxpO5UpEREReClYmK/5T6z9s6baFQi6FOHXjFFVnV2XG/hk6TVAknVhbWdO+THsOBRxiVbtVVHCrwL2Ee3y560u8JnsxYO0A/oz+0+iYhlG5EhERkZdKzcI1Ce8TTrOizYhLiuPTrZ8SHRdtdCyRLMXKZEWrkq040PsAwW8HU/WVqjxIfMC3e7+lyJQiBAQHEHE7wuiY6U7lSkRERF46eRzz8Mvbv/BFoy9Y0noJORxyGB1JJEsymUw0K9aMXf67CH0nlDoedYhPiuf7A99T9Nui9Pi5B6dvnDY6ZrpRuRIREZGXkpXJiqE1hlLbo3bKuh8P/8jUvVN1mqBIOjOZTDT0bsiWblvY0m0LjbwbkZicyLzweZSYWoJOqzrxx19/GB0zzalciYiISKZw4fYFegf35t2179JuZTvuPLhjdCSRLKmORx02vLOBXf67aFa0GcnmZBYfWUyZaWVos7wN4VHhRkdMMypXIiIikikUzlGY8a+Nx9bKlpV/rKTC9xXYf2W/0bFEsqxqhaoR3DGYg70P8lbJtzBj5qfjP1Hh+wq0WNKCfZf3GR3R4l6KcjVt2jS8vLxwcHDA19eXbdu2PXX8li1b8PX1xcHBAW9vb2bMmJFOSUVERMQoJpOJQdUGsaPHDjxzenL+9nlqzKnB5N2TdZqgiIEqFKjAT+1+4kjfI3Qo0wETJn499StVZlfh9UWvs/3idqMjWkyGL1fLli1j0KBBjBw5krCwMGrXrk2TJk24ePFiquPPnz9P06ZNqV27NmFhYXz44YcMGDCAn376KZ2Ti4iIiBEqv1KZsD5hvFXyLRKSExi0fhBtVrQh2ZxsdDSRLK1M/jIsab2E4/2P07V8V6xN1qw/u57a82pTf0F9fjv/20v/h5AMX66+/vpr/P396dmzJyVLliQwMBB3d3emT5+e6vgZM2ZQuHBhAgMDKVmyJD179qRHjx58+eWX6ZxcREREjJLTIScr265kyutTsLO2o3ie4liZMvyvPSJZQvG8xZn/5nxOvXeKXhV7YWtly+aIzTRY2IBa82qx9vTal7Zk2Rgd4Gni4+M5cOAAw4cPf2S9n58fO3fuTPUxu3btws/P75F1jRs3Zs6cOSQkJGBra5tmeUVERCTjMJlMvFf1Pep71adE3hIp6w9fPczOS6n/HpE7W27alW6XsrzkyBLuxKV+YQwXexc6lu2Ysrzyj5Vcj72e6lhHW0e6lO+Sshx0IoiomKhUx9pa2eJf0T9lOfhU8BNvymrCRJ9KfVKW159Zz/nb51MdC9CrYi+srawB2HRuE6dvPvkS2d18uuFg4wDA1gtbWXd9HX8e/BNra+vHxnYu1xlnO2cAdl7ayeGrh5+43Q5lOpDTIScAey/v5WDkwSeObV2yNfmc8gFwMPIgey/vfeLYlsVbUiB7AQCOXD3Cjks7nji2WdFmuOdwB+D4X8fZcmHLE8f6FfHDO5c3AKdvnGbT+U1PHPua12sUy1MMgIjbEaw7s+6JY+t41KFUvlIA/Bn9J8Gngp84tnqh6pR3Kw9AVEwUQSeCnji2csHK+Bb0BeBG7A1W/LHiiWMruFWgaqGqANx5cIclR5c8cWyZ/GWoVbgWAPfi7/HD4R+eOLZE3hLU86wHQHxSPHPD5j5xbLvS7fiozkd8seMLZh6Yyc5LO2m6uCmFXQrTIXcHmpibPPGxGVGGLlfXr18nKSkJV1fXR9a7uroSFZX6D6SoqKhUxycmJnL9+nUKFCjw2GPi4uKIi4tLWY6OfngjwoSEBBISEl70aYhB/n7t9BpKetB8k/SmOffsiucqjjnJTEJSAvFJ8fj/7M/+yNQvdFEmXxlaFWuVsjxq86gnFhDvnN60LdE2ZXn81vGEX039KmhuTm68XertlOUvd3zJjj9T/+U/u112upT9bxGbsnsKoedDUx1rZbKiR/keKcvT903n51M/pzoWoHPpztjb2AMwN2wui48ufuLYVsVaYZ3tYZFafGQxc/+cC6l3PPy8/LB3ebjd5UeXM3nv5Cdut1ahWjjlcQIg6HgQE3dMfOLYiq4VyWn3sIiFnArh480fP3Fs8VzFyeuQF4CNZzcyJHTIE8cGdwjGzdENgG0R2+gb0veJY5e9tQx354dFbPel3fRd8+Sxc5vPxcvFC4CDlw8+dezU16dSNGdRAI5FHXvq2M8bfE6pPA+L2Om/Tj917Kg6oyiXrxwAEbcinjr2g+ofUNG1IgCR0ZFPHdu/Un+qFnhYxG7cu/HUsd3Kd6PmKzUBuBt396lj25Vqx6I3F/F1o68ZUnUI3t89LLIXoy/yefTnNDjfgPre9Z/4+PTwPD9nM3S5+pvJZHpk2Ww2P7bun8antv5vEydOZMyYMY+t37BhA46Ojs8bVzKY0NDU/0MSSQuab5LeNOeez9nYs9jG2lItR7VUP5+f/ISEhKQsF7UqSp4ceVIdm9M65yNjPZI9cMjhkOpYJ2unR8YWTCj4xAz2VvaPjM17P+8Tx1ph9cjYHHdzPHEswPr167ExPfz1L9utbE8d+/vG38lmnQ0Au5t2Tx27Y/MOXGxcAEi+kfzUsXu37eWs3VkA4m7FPXVs2K4wIu0jAYi5HfPUscf2HyP66MM/kN+8c/OpY08dPEXiiUQAou5GPXVsxJEIQs49/Bpfirn01LFXjl8h5NLDsedizz117LVT1wiJejg24n7EU8fePnebkBsPx15+cPmpY2MvxqbMiatxV586NuFyQsrYWwm3njqWq6SMjUl8+mthd90uZWxc8tNfY+fbziljk8xJVMtRjURzIlfirpDHJg+xx2MJORHyxMenh9jY2GceazJn4BMa4+PjcXR0ZMWKFbRq9d+/Ig0cOJDw8HC2bHn8EG6dOnWoUKECkyf/9y8mq1evpl27dsTGxqZ6WmBqR67c3d25fv06Li4uFn5Wkl4SEhIIDQ2lUaNGOh1U0pzmm6Q3zTlJT5pvkt4SEhLYsGEDfn5+hs+56Oho8ubNy507d/6xG2ToI1d2dnb4+voSGhr6SLkKDQ2lZcuWqT6mevXq/Prrr4+s27BhA5UqVXriC2Nvb4+9vf1j621tbQ1/MeXF6XWU9KT5JulNc07Sk+abpCeTyZQh5tzz7D/DXzZnyJAhzJ49m7lz53L8+HEGDx7MxYsXCQgIAGDEiBF06fLf85IDAgK4cOECQ4YM4fjx48ydO5c5c+YwdOhQo56CiIiIiIhkARn6yBVA+/btuXHjBmPHjiUyMpIyZcoQEhKCh4cHAJGRkY/c88rLy4uQkBAGDx7M1KlTKViwIFOmTKF169ZGPQUREREREckCMny5AujXrx/9+vVL9XPz589/bF3dunU5ePDJl/UUERERERGxtAx/WqCIiIiIiMjLQOVKRERERETEAlSuRERERERELEDlSkRERERExAJUrkRERERERCxA5UpERERERMQCVK5EREREREQsQOVKRERERETEAl6KmwinN7PZDEB0dLTBSeRFJCQkEBsbS3R0NLa2tkbHkUxO803Sm+acpCfNN0lvGWnO/d0J/u4IT6NylYq7d+8C4O7ubnASERERERHJCO7evUuOHDmeOsZkfpYKlsUkJydz5coVsmfPjslkMjqO/EvR0dG4u7tz6dIlXFxcjI4jmZzmm6Q3zTlJT5pvkt4y0pwzm83cvXuXggULYmX19HdV6chVKqysrChUqJDRMcRCXFxcDP+mlKxD803Sm+acpCfNN0lvGWXO/dMRq7/pghYiIiIiIiIWoHIlIiIiIiJiAdajR48ebeowMRwAACAASURBVHQIkbRibW1NvXr1sLHRGbCS9jTfJL1pzkl60nyT9PYyzjld0EJERERERMQCdFqgiIiIiIiIBahciYiIiIiIWIDKlYiIiIiIiAWoXImIiIiIiFiAypWIiIiIiIgFqFyJiIiIiIhYgMqViIiIiIiIBahciYiIiIiIWIDKlYiIiIiIiAWoXImIiIiIiFiAypWIiIiIiIgFqFyJiIiIiIhYgMqViIiIiIiIBahciYiIiIiIWIDKlYiIiIiIiAWoXImIiIiIiFiAypWIiIiIiIgFqFyJiIiIiIhYgMqViIiIiIiIBahciYiIiIiIWIDKlYiIiIiIiAWoXImIiIiIiFiAypWIiIiIiIgFqFyJiIiIiIhYgMqViIiIiIiIBahciYiIiIiIWIDKlYiIiIiIiAWoXImIiIiIiFiAypWIiIiIiIgFqFyJiIiIiIhYgMqViIiIiIiIBahciYiIiIiIWIDKlYiIiIiIiAWoXImIiIiIiFiAypWIiIiIiIgFqFyJiIiIiIhYgMqViIiIiIiIBahciYiIiIiIWIDKlYiIiIiIiAWoXImIiIiIiFiAypWIiIiIiIgFqFyJiIiIiIhYgMqViIiIiIiIBahciYiIiIiIWIDKlYiIiIiIiAWoXImIiIiIiFiAypWIiIiIiIgFqFyJiIiIiIhYgMqViIiIiIiIBahciYiIiIiIWIDKlYiIiIiIiAWoXImIiIiIiFiAypWIiIiIiIgFqFyJiIiIiIhYgMqViIiIiIiIBahciYiIiIiIWIDKlYiIiIiIiAWoXImIiIiIiFiAypWIiIiIiIgFqFyJiIiIiIhYgI3RATKi5ORkrly5Qvbs2TGZTEbHERERERERg5jNZu7evUvBggWxsnr6sSmVq1RcuXIFd3d3o2OIiIiIiEgGcenSJQoVKvTUMSpXqciePTvw8Avo4uJicBr5txISEtiwYQN+fn7Y2toaHUcyOc03SW+ac5KeNN8kvWWkORcdHY27u3tKR3galatU/H0qoIuLi8rVSywhIQFHR0dcXFwM/6aUzE/zTdKb5pykJ803SW8Zcc49y9uFdEELERERERERC1C5EhERERERsQCVKxEREREREQvQe65EREQkw0tKSiIhIcHoGFlWQkICNjY2PHjwgKSkJKPjSBaQ3nPOzs7uHy+z/ixUrkRERCTDMpvNREVFcfv2baOjZGlmsxk3NzcuXbqke4BKukjvOWdlZYWXlxd2dnYvtB2VKxEREcmw/i5W+fPnx9HRUb/YGyQ5OZmYmBicnZ0t8td9kX+SnnMuOTmZK1euEBkZSeHChV/o54zKlYiIiGRISUlJKcUqT548RsfJ0pKTk4mPj8fBwUHlStJFes+5fPnyceXKFRITE1/o0u/67hAREZEM6e/3WDk6OhqcREQyu79PB3zR93epXImIiEiGplMBRSStWernjMqViIiIiIiIBahciYiIiBjAZDIRFBSU7vv19PQkMDAw3ff7Irp168abb76ZLvuqV68egwYNSpd9pbW0ei6jR4/Gx8fH4tvNDFSuRERERCzs2rVr9OnTh8KFC2Nvb4+bmxuNGzdm165dKWMiIyNp0qSJgSlTt2rVKipVqkTOnDlxcnLCx8eHH374waL76N27N9bW1ixdutSi230emzdvxmQyPXaZ/1WrVjFu3Lg03Xe3bt0wmUwEBAQ89rl+/fphMpno1q3bM2/vSc9F0p/KlYiIiIiFtW7dmkOHDrFgwQJOnTrFL7/8Qr169bh582bKGDc3N+zt7Q1MmbrcuXMzcuRIdu3axeHDh+nevTv+/v5s2rTJItuPjY1l2bJlfPDBB8yZM8ci27Sk3Llzkz179jTfj7u7O0uXLuX+/fsp6x48eMCSJUsoXLhwmu9f0obKlYiIiIgF3b59m+3btzNp0iTq16+Ph4cHVapUYcSIETRr1ixl3P+eFrhz5058fHxwcHCgUqVKBAUFYTKZCA8PB/57dGLTpk1UqlQJR0dHatSowcmTJ1O2cfbsWVq2bImrqyvOzs5UrlyZjRs3Plf+evXq0apVK0qWLEmRIkUYOHAg5cqVY/fu3S/4lXloxYoVlCpVihEjRrBjxw4iIiIe+XxSUhJDhgwhZ86c5MmTh2HDhmE2mx8Zs27dOmrVqpUy5o033uDs2bMpn4+IiMBkMrF06VJq1KiBg4MDpUuXZvPmzSmfr1+/PgC5cuV65EjR/z2VbsSIEVSrVu2x51CuXDlGjRqVsjxv3jxKliyJg4MDJUqUYNq0af/4dahYsSKFCxdm1apVKetWrVqFu7s7FSpUeGSs2Wzm888/x9vbm2zZslG+fHlWrlz5j88FHl7SfNiwYeTOnRs3NzdGjx79yLYvXrxIy5YtcXZ2xsXFhXbt2nH16tVHxnz22We4urqSPXt2/P39efDgwT8+v6xK5UpEREReHmYz3LtnzMf//IL/JM7Ozjg7OxMUFERcXNwzPebu3bs0b96csmXLcvDgQcaNG8d//vOfVMeOHDmSr776iv3792NjY0OPHj1SPhcTE0PTpk3ZuHEjYWFhNG7cmObNm3Px4sVnyvG/zGYzmzZt4uTJk9SoUeNfbeN/zZkzh86dO5MjRw6aNm3KvHnzHvn8V199xdy5c5kzZw7bt2/n5s2brF69+pEx9+7dY8iQIezbt49NmzZhZWVFq1atSE5OfmTcBx98wPvvv09YWBg1atSgRYsW3LhxA3d3d3766ScATp48SWRkJJMnT34sa6dOndizZ88jxe3YsWMcOXKETp06ATBr1ixGjhzJ+PHjOX78OBMmTODjjz9mwYIF//i16N69+yPPf+7cuY+8nn/76KOPmDdvHtOnT+fYsWMMHjyYzp07s2XLln98LgsWLMDJyYk9e/bw+eefM3bsWEJDQ4GHr++bb77JzZs32bJlC6GhoZw9e5b27dunPH758uWMGjWK8ePHs3//fgoUKPBM5THLMstj7ty5YwbMd+7cMTqKvID4+HhzUFCQOT4+3ugokgVovkl6ywpz7v79++Y//vjDfP/+/f+ujIkxmx/WnPT/iIl55uwrV64058qVy+zg4GCuUaOGecSIEeZDhw49MgYwr1692mw2m83Tp08358mT55HnOmvWLDNgDgsLM5vNZvPvv/9uBswbN25MGbNmzRoz8OjX6H+UKlXK/O2336Yse3h4mL/55pun5r99+7bZycnJbGNjY7a3tzfPmjXLfOvWLXNSUtIzfw1Sc+rUKbOtra35r7/+MpvNZvPq1avN7u7uj2y3QIEC5s8++yxlOSEhwVyoUCFzy5Ytn7jda9eumQHzkSNHzGaz2Xz+/HkzkOp2Jk2aZDab//v1vHXr1iPbqlu3rnngwIH/j707j4uy3P8//h52EHBJQ0RQyRbccU1L0fMTScywMi3NpdRS65HK8SiUS2ZmmaWVqeVOerKTqSfLU9LilpqZWylquYRfgxRTEVEY4f794WGOI6CM3jBMvp6Ph4+Hc8113/fnnrkceXPd9zW2x40aNTJeeukl2+PExESjRYsWtsehoaHGP//5T7t9TJw40WjdunWx9fbr18+Ii4szTpw4YXh7exuHDx82jhw5Yvj4+BgnTpww4uLijH79+hmGYRhZWVmGj4+PsWnTJrt9DBgwwHjssceueS733nuvXVuLFi2M0aNHG4ZhGGvWrDHc3d2N1NRU2/N79uwxJBlbt241DMMwWrdubQwePNhuH61atTIaN25c7PmZIS8vz5QxV1JFft78lyPZgJkrAAAAkz388MP6/fff9emnnyomJkZr165V06ZNtXDhwiL779+/X40aNZKPj4+trWXLlkX2bdSoke3vwcHBki4toCFdmtEZNWqU6tWrp0qVKsnf31/79u1zeOYqICBAO3fu1A8//KBJkyZp5MiR2rhxY7H9C2br/P39i1ykocC8efMUExOjqlWrSpJiY2N17tw526WLZ86cUVpamlq3bm3bxsPDQ82bN7fbz8GDB9WrVy+Fh4crMDBQderUkaRC51nUflJSUkr4KlzSu3dvLVmyRNKlmZ4PP/zQNmt14sQJHT16VAMGDLB7DV5++WW72a7iVK1aVV26dNGiRYu0YMECdenSxfbaFNi7d68uXLig6Ohou2MkJSWV6BiXjxfp0pgpGC8pKSkKDQ1VaGio7fmCsVPwOqWkpNi9jpIKPcb/eDi7AAAAgBLz85Oyspx3bAf4+PgoOjpa0dHRGjdunAYOHKjx48cXuQqcYRiFvsTUKOYyRE9PT9vfC7YpuBzuH//4h7788ktNnTpVdevWla+vr7p3767c3FyHandzc1PdunUlSU2aNNHevXs1bdo0xcbGFtm/4L4wSQoMDCyyT15enpKSkpSeni4PDw+79nnz5qlTp04lrq9r164KDQ3VnDlzVKNGDeXn56tBgwYlOk9Hvyy2V69eSkhI0Pbt23X+/HkdPXpUjz76qKT/ve5z5sxRq1at7LZzd3cv0f6ffPJJPfvss5Kkd999t9DzBcf4/PPPFRISYvdcSRZEuXy8SJfOv2CfRY27q7Xj2ghXAADAdVgsUoUKzq7iutSrV6/Y77W66667tGTJEuXk5Nh+YN62bZvDx9iwYYP69++vBx98UNKle7CuXDDiehiGcdX7xwqC2NWsXr1aZ8+e1Y4dO+yCx759+9S7d2+dPHlSt9xyi4KDg7Vlyxa1a9dOknTx4kX9+OOPatq0qSTp5MmTSklJ0Xvvvae2bdtKUrGzakXtpyDIeHl5SboU7q6mZs2aateunZYsWaLz58+rY8eOCgoKkiQFBQUpJCREhw4dss1mOeq+++6zhcKYmJhCz9erV0/e3t5KTU1VVFRUkfso6bkUte/U1FQdPXrUNnu1d+9enTlzRhEREZKkiIgIbdmyRX379rVtZ9biJn9FhCsAAAATnTx5Uo888oiefPJJNWrUSAEBAdq2bZumTJmiuLi4Irfp1auXXnjhBT311FNKSEhQamqqpk6dKsmxmZa6detq+fLl6tq1qywWi8aOHVtokYdrmTx5spo3b67bbrtNubm5Wr16tT744AO98cYbDu3nSvPmzVOXLl3UuHFju/b69etr+PDhWrx4sYYNG6Zhw4bp1Vdf1e23366IiAi9+eabdt/fVLlyZd1yyy16//33FRwcrNTUVCUkJBR5zHfffde2n2nTpunUqVO2BSNq1aoli8Wizz77TLGxsfL19ZW/v3+R++ndu7defPFF5ebmatq0aXbPvfjii3ruuecUGBiozp07KycnR9u2bdOpU6cUHx9/zdfF3d3ddgleUbNdAQEBGjlypEaMGKH8/Hzde++9yszM1KZNm+Tv769+/fo5dC6X69ixoxo1aqTevXtr+vTpunjxooYOHaqoqCjbpZjDhg1Tv3791Lx5c917771asmSJ9uzZo/Dw8Gvu/2bEPVcAAAAm8vf3V6tWrTRt2jS1a9dODRo00NixYzVo0CDNmDGjyG0CAwO1atUq7dy5U02aNNELL7ygcePGSZLdfVjXMm3aNFWuXFlt2rRR165dFRMTY5vxKalz585p6NChql+/vtq0aaNly5YpKSnJbubCUX/88Yc+//xzPfzww4Wes1gseuihh2zfefX3v/9dffv2Vf/+/dW6dWsFBATYZuKkS5csLl26VD/++KMaNGigESNG6PXXXy/yuK+++qpee+01NW7cWBs2bNC///1v2z1NISEhmjBhghISEhQUFGSb0SrKI488opMnTyo7O1vdunWze27gwIGaO3euFi5cqIYNGyoqKkoLFy603QdWEoGBgcVeTilJEydO1Lhx4zR58mRFREQoJiZGq1atsh3DkXO5XMHXAVSuXFnt2rVTx44dFR4ero8++sjWp2fPnho3bpxGjx6tZs2a6bffftOQIUNKfG43G4tR3AW9N7HMzExVrFhRZ86cuepAR/lmtVq1evVqxcbGFrreGDAb4w1l7WYYcxcuXNDhw4dVp04dhwLGX8WSJUv0xBNP6MyZM/L19XVqLfn5+crMzFRgYKDc3Mr/7+aPHDmiOnXqaMeOHWrSpImzy8F1KOsxd7XPG0eyAZcFAgAAlANJSUkKDw9XSEiIdu3apdGjR6tHjx5OD1YASo5wBQAAUA6kp6dr3LhxSk9PV3BwsB555BFNmjTJ2WUBcADhCgAAoBwYNWqURo0a5ewy/hJq165d7FL2QGkq/xfNAgAAAIALIFwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAABOYLFYtHLlyjI/bu3atTV9+vQyP64ztG/fXsOHD3d2GaZZu3atLBaLTp8+XSr7d9aYvFL79u01YsQI0/f74osvqkmTJqbv93KEKwAAAJMdP35cTz/9tMLCwuTt7a3q1asrJiZGmzdvtvVJS0tT586dnVhl0ZYvX67mzZurUqVKqlChgpo0aaIPPvjAlH1/++236tChg6pUqSI/Pz/dfvvt6tevny5evChJWrhwoSpVquTwfosLHcuXL9fEiROvu95Dhw7pscceU40aNeTj46OaNWsqLi5OBw4ckCQdOXJEFotFO3fuvO5juJL+/fvLYrFo8ODBhZ4bOnSoLBaL+vfvX+L9lXZYdAbCFQAAgMkefvhh7dq1S4sWLdKBAwf06aefqn379vrzzz9tfapXry5vb28nVlm0KlWq6IUXXtDmzZu1e/duPfHEExowYIC+/vrrG9rvnj171LlzZ7Vo0ULr16/XTz/9pHfeeUeenp7Kz883qXp7VapUUUBAwHVtm5ubq+joaGVmZmr58uXav3+/PvroIzVo0EBnzpwxudKyk5ube0Pbh4aGaunSpTp//ryt7cKFC/rwww8VFhZ2o+W5PMIVAACAiU6fPq2NGzfqtddeU4cOHVSrVi21bNlSiYmJ6tKli63flZdgbdq0SU2aNJGPj4+aN2+ulStX2s2KFPyW/+uvv1bz5s3l5+enNm3aaP/+/bZ9HDx4UHFxcQoKCpK/v79atGihr776yqH627dvrwcffFARERG67bbbNGzYMDVq1Ehbtmy5odclOTlZwcHBmjJliho0aKDbbrtN9913n+bOnSsvLy+tXbtWTzzxhM6cOSOLxSKLxaIXX3xRkrR48WI1b95cAQEBql69unr16qXjx49LujR71KFDB0lS5cqV7WZPrrwsMCcnR6NGjVJoaKi8vb11++23a968eUXWu3fvXh06dEgzZ87U3XffrVq1aumee+7RpEmT1KJFC0lSnTp1JEmRkZGyWCxq3769JOmHH35QdHS0qlatqooVKyoqKkrbt2+327/FYtHcuXP14IMP2mbxPv30U7s+q1ev1h133CFfX1916NBBR44csXv+5MmTeuyxx1SzZk35+fmpYcOG+vDDD+36tG/fXs8++6zi4+NVtWpVRUdHS5J++eUXtWvXTj4+PqpXr56Sk5Ov9RZKkpo2baqwsDAtX77c1rZ8+XKFhoYqMjLSrq9hGJoyZYrCw8Pl6+urxo0ba9myZZKu/r5JUn5+vsaNG6eqVauqevXqtrFQIDU1VXFxcfL391dgYKB69OihP/74w67Pq6++qqCgIAUEBGjAgAG6cOFCic7xRhCuAACA6zl3rvg/V/4AdbW+l/32/ap9HeDv7y9/f3+tXLlSOTk5Jdrm7Nmz6tq1qxo2bKjt27dr4sSJGj16dJF9X3jhBb3xxhvatm2bPDw89OSTT9qey8rKUmxsrL766ivt2LFDMTEx6tq1q1JTUx06hwKGYejrr7/W/v371aZNm+vaR4Hq1asrLS1N69evL/L5Nm3aaPr06QoMDFRaWprS0tI0cuRISZdmWyZOnKhdu3Zp5cqVOnz4sO0H8dDQUH3yySeSpP379ystLU1vvfVWkcfo27evli5dqrffflspKSmaPXu2/P39i+xbrVo1ubm5admyZcrLyyuyz9atWyVJX331ldLS0myB4+zZs+rXr582bNigLVu26Pbbb1dsbKzOnj1rt/2ECRPUo0cP7d69W7Gxserdu7dtdvPo0aN66KGHFBsbq507d2rgwIFKSEiw2/7ChQtq1qyZPvvsM/3888966qmn1KdPH33//fd2/RYtWiQPDw999913eu+995Sfn6+HHnpI7u7u2rJli2bPnl3seCvKE088oQULFtgez58/324cFhgzZowWLFigWbNmac+ePRoxYoQef/xxrVu37prvW1JSkipUqKDNmzdrypQpeumll2wB0DAMdevWTX/++afWrVun5ORkHTx4UD179rRt/69//Uvjx4/XpEmTtG3bNgUHB2vmzJklPsfrZqCQM2fOGJKMM2fOOLsU3IDc3Fxj5cqVRm5urrNLwU2A8YaydjOMufPnzxt79+41zp8/X/hJqfg/sbH2ff38iu8bFWXft2rVovs5aNmyZUblypUNHx8fo02bNkZiYqKxa9euK05BxooVKwzDMIxZs2YZt9xyi925zpkzx5Bk7NixwzAMw/j2228NScZXX31l6/P5558bkop+jf6rXr16xjvvvGN7XKtWLWPatGlXrf/06dNGhQoVDA8PD8Pb29uYM2eOcerUKSMvL6/kL8IVLl68aPTv39+QZFSvXt3o1q2b8c4779j9vLVgwQKjYsWK19zX1q1bDUnG2bNnDcP432tz6tQpu35RUVHGsGHDDMMwjP379xuSjOTk5BLXPGPGDMPPz88ICAgwOnToYLz00kvGwYMHbc8fPnzY7j262rkHBAQYq1atsrVJMsaMGWN7nJWVZVgsFuM///mPYRiGkZiYaERERBj5+fm2PqNHjy7yPC8XGxtr/P3vf7c9joqKMpo0aWLX58svvzTc3d2No0eP2tr+85//2I3JovTr18+Ii4szTpw4YXh7exuHDx82jhw5Yvj4+BgnTpww4uLijH79+tnOx8fHx9i0aZPdPgYMGGA89thjhmFc/X2799577cZcixYtjNGjRxuGYRhr1qwx3N3djdTUVNs2e/bsMSQZW7duNQzDMFq3bm0MHjzYbr+tWrUyGjduXOS5Xe3zxpFswMwVAACAyR5++GH9/vvv+vTTTxUTE6O1a9eqadOmWrhwYZH99+/fr0aNGsnHx8fW1rJlyyL7NmrUyPb34OBgSbJdInfu3DmNGjVK9erVU6VKleTv7699+/Y5PHMVEBCgnTt36ocfftCkSZM0cuRIbdy4sdj+BbN1/v7+RS52IEnu7u5asGCB/u///k9TpkxRjRo1NGnSJNWvX19paWlXrWfHjh2Ki4tTrVq1FBAQYLv8zpHz2rlzp9zd3RUVFVXibZ555hmlp6dr8eLFat26tT7++GPVr1//mpfQHT9+XIMHD9Ydd9yhihUrqmLFisrKyipU7+XvZYUKFRQQEGB7L1NSUnT33XfLYrHY+rRu3dpu+7y8PE2aNEmNGjXSLbfcIn9/f61Zs6bQcZo3b273OCUlRWFhYapZs2ax+76aqlWrqkuXLlq0aJEWLFigLl26qGrVqnZ99u7dqwsXLig6OtpufCQlJengwYPXPEbDhg3tHgcHB9u9NqGhoQoNDbU9XzDmU1JSbH2uPCdHzvF6eZT6EQAAAMyWlVX8c+7u9o//+wNZkdyu+D3zFfe03AgfHx9FR0crOjpa48aN08CBAzV+/PgiV1MzDMPuh+iCtqJ4enra/l6wTcGCEP/4xz/05ZdfaurUqapbt658fX3VvXt3hxcxcHNzU926dSVJTZo00d69ezVt2jTFxsYW2f/y1fICAwOvuu+QkBD16dNHffr00csvv6w77rhDs2fP1oQJE4rsf+7cOXXq1EmdOnXS4sWLVa1aNaWmpiomJsah8/L19S1x38sFBATogQce0AMPPKCXX35ZMTExevnll233LhWlf//+OnHihKZPn65atWrJ29tbrVu3LlTv5e+ldOn9LHgvi3v/L/fGG29o2rRpmj59uho2bKgKFSpo+PDhhY5ToUIFu8dF7fvK8XctTz75pJ599llJ0rvvvlvo+YLz+PzzzxUSEmL3XEkWcrnWa1NUvcW1lyWnzlytX79eXbt2VY0aNUq8rv66devUrFkz+fj4KDw8XLNnzy6279KlS2WxWNStWzczywYAAM5WoULxfy6b/blm3yt/4C6unwnq1aunc8Xcv3XXXXdp9+7ddvdobdu2zeFjbNiwQf3799eDDz6ohg0bqnr16oUWQbgehmFc9f6xunXr2v7ceuutJd5v5cqVFRwcbHtdvLy8Ct3ftG/fPmVkZOjVV19V27Ztddddd9lmMAp4eXlJUrH3RkmXZkLy8/O1bt26Etd3JYvForvuusuu3qKOu2HDBj333HOKjY1V/fr15e3trYyMDIeOVa9evUKLiFz5eMOGDYqLi9Pjjz+uxo0bKzw8XL/88kuJ9p2amqrff//d1nb51wSUxH333afc3Fzl5uYqJiamyGN4e3srNTXVbnzUrVvXNuNUkvftavUfPXrU1rZ3716dOXNGERERkqSIiIhrvn6lwanh6ty5c2rcuLFmzJhRov6HDx9WbGys2rZtqx07duj555/Xc889Z7sZ7nK//fabRo4cqbZt25pdNgAAQLFOnjypv/3tb1q8eLF2796tw4cP6+OPP9aUKVMUFxdX5Da9evVSfn6+nnrqKaWkpNhmnyTHZhTq1q2r5cuXa+fOndq1a5dtv46YPHmykpOTdejQIe3bt09vvvmmPvjgA/Xo0cOh/Vzpvffe05AhQ7RmzRodPHhQe/bs0ejRo7Vnzx517dpV0qUvOM7KytLXX3+tjIwMZWdnKywsTF5eXnrnnXd06NAhffrpp4W+u6pWrVqyWCz67LPPdOLECWUVMbNZu3Zt9evXT08++aRtUYy1a9fqX//6V5H17ty5U3FxcVq2bJn27t2rX3/9VfPmzdP8+fNt7+Ott94qX19fffHFF/rjjz9sS7TXrVtXH3zwgVJSUvT999+rd+/eKI4aCgAAIABJREFUDs+cDR48WAcPHlR8fLz279+vf/7zn4UuK61bt66Sk5O1adMmpaSk6Omnn1Z6evo1992xY0fdeeed6tu3r3bt2qUNGzbohRdecKg+d3d3paSkKCUlRe5Xzhbr0ozfyJEjNWLECC1atEgHDx7Ujh079O6772rRokWSSva+FVd/o0aN1Lt3b23fvl1bt25V3759FRUVZbsEctiwYZo/f77mz5+vAwcOaPz48dqzZ49D53g9nBquOnfurJdfflkPPfRQifrPnj1bYWFhmj59uiIiIjRw4EA9+eSTtg+fAnl5eerdu7cmTJig8PDw0igdAACgSP7+/mrVqpWmTZumdu3aqUGDBho7dqwGDRpU7C+UAwMDtWrVKu3cuVNNmjTRCy+8oHHjxkmS3X1Y1zJt2jRVrlxZbdq0UdeuXRUTE6OmTZs6VP+5c+c0dOhQ1a9fX23atNGyZcuUlJSkvn37OrSfK7Vs2VJZWVkaPHiw6tevr6ioKG3ZskUrV6603QfVpk0bDR48WD179lS1atU0ZcoUVatWTQsXLtTHH3+sevXq6dVXXy30s19ISIgmTJighIQEBQUF2S5Xu9KsWbPUvXt3DR06VHfddZcGDRpU7GxizZo1Vbt2bU2YMEGtWrVS06ZN9dZbb2nChAm2IOLh4aG3335b7733nmrUqGELXfPnz9epU6cUGRmpPn366LnnnnNoRk+SwsLC9Mknn2jVqlVq3LixZs+erVdeecWuz9ixY9W0aVPFxMSoffv2ql69eomu2HJzc9OKFSuUk5Ojli1bauDAgZo0aZJD9UmXxu3VLgOdOHGixo0bp8mTJysiIkIxMTFatWqVbQn7kr5vVyq44q1y5cpq166dOnbsqPDwcH300Ue2Pj179tS4ceM0evRoNWvWTL/99puGDBni8Dk6ymKU5ILOMmCxWLRixYqrDoh27dopMjLSbpnGFStWqEePHsrOzrZdmzl+/Hjt3r1bK1asUP/+/XX69OmrXnKYk5NjN9WdmZmp0NBQZWRkXPO6YZRfVqtVycnJio6OLnTdLmA2xhvK2s0w5i5cuKCjR4+qdu3aDgWMv4olS5ZowIABOnXq1HXfL2QWwzB09uxZBQQEOP2eFtwcynrMXbhwQUeOHFFoaGihz5vMzExVrVpVZ86cuWY2cKkFLdLT0xUUFGTXFhQUpIsXLyojI0PBwcH67rvvNG/ePLsbK69l8uTJRd5EuWbNGvn5+d1w3XCukn4pHmAGxhvK2l95zHl4eKh69erKyspyeEEGV7R06VLVqlVLNWrU0M8//6yEhAR169ZNVqtVVqvV2eVJUqHvaQJKW1mNudzcXJ0/f17r16/XxYsX7Z7Lzs4u8X5cKlxJha87Lph4s1gsOnv2rB5//HHNmTOn0HKQV5OYmKj4+Hjb44KZq06dOjFz5cJuht/qovxgvKGs3QxjrmDmyt/f/6aYuTpz5oyGDBmi9PR0BQcH65FHHtHLL79cLn7Ry8wVypozZq58fX3Vrl27ImeuSsqlwlX16tUL3aR3/PhxeXh46JZbbtGePXt05MgR202R0v+WgfTw8ND+/ft12223Fdqvt7d3kUtCenp6/mX/w7qZ8D6iLDHeUNb+ymMuLy9PFotFbm5ucrtyyfS/oNGjR2v06NHOLqNIBT9PFbwfQGkr6zHn5uYmi8VS5GeqI5+xLhWuWrdurVWrVtm1rVmzRs2bN5enp6fuuusu/fTTT3bPjxkzRmfPntVbb71l90VjAAAAAGAmp4arrKws/frrr7bHhw8f1s6dO1WlShWFhYUpMTFRx44dU1JSkqRLS1LOmDFD8fHxGjRokDZv3qx58+bpww8/lHRpNZ0GDRrYHaNSpUqSVKgdAAC4hnKy9haAvzCzPmecOq+7bds2RUZGKjIyUpIUHx+vyMhI29KjaWlpSk1NtfWvU6eOVq9erbVr16pJkyaaOHGi3n77bT388MNOqR8AAJSegktxHLmZHACuR8GiOUV9Z5cjnDpz1b59+6umxCu/KE2SoqKitH379hIfo6h9AACA8s/d3V2VKlXS8ePHJUl+fn4spuAk+fn5ys3N1YULF7jnCmWiLMdcfn6+Tpw4IT8/P3l43Fg8cql7rgAAwM2levXqkmQLWHAOwzB0/vx5+fr6EnBRJsp6zLm5uSksLOyGj0W4AgAA5ZbFYlFwcLBuvfXWcvNdTzcjq9Wq9evXq127dn/Z1SlRvpT1mPPy8jJlhoxwBQAAyj13d/cbvhcC18/d3V0XL16Uj48P4QplwlXHHBfNAgAAAIAJCFcAAAAAYALCFQAAAACYgHAFAAAAACYgXAEAAACACQhXAAAAAGACwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYgHAFAAAAACYgXAEAAACACQhXAAAAAGACwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYgHAFAAAAACYgXAEAAACACQhXAAAAAGACwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYgHAFAAAAACYgXAEAAACACQhXAAAAAGACwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJnBquFq/fr26du2qGjVqyGKxaOXKldfcZt26dWrWrJl8fHwUHh6u2bNn2z0/Z84ctW3bVpUrV1blypXVsWNHbd26tbROAQAAAAAkOTlcnTt3To0bN9aMGTNK1P/w4cOKjY1V27ZttWPHDj3//PN67rnn9Mknn9j6rF27Vo899pi+/fZbbd68WWFhYerUqZOOHTtWWqcBAAAAAPJw5sE7d+6szp07l7j/7NmzFRYWpunTp0uSIiIitG3bNk2dOlUPP/ywJGnJkiV228yZM0fLli3T119/rb59+5pXPAAAAABcxqnhylGbN29Wp06d7NpiYmI0b948Wa1WeXp6FtomOztbVqtVVapUKXa/OTk5ysnJsT3OzMyUJFmtVlmtVpOqR1kreO94D1EWGG8oa4w5lCXGG8paeRpzjtTgUuEqPT1dQUFBdm1BQUG6ePGiMjIyFBwcXGibhIQEhYSEqGPHjsXud/LkyZowYUKh9jVr1sjPz+/GC4dTJScnO7sE3EQYbyhrjDmUJcYbylp5GHPZ2dkl7utS4UqSLBaL3WPDMIpsl6QpU6boww8/1Nq1a+Xj41PsPhMTExUfH297nJmZqdDQUHXq1EmBgYEmVY6yZrValZycrOjo6CJnNQEzMd5Q1hhzKEuMN5S18jTmCq5qKwmXClfVq1dXenq6Xdvx48fl4eGhW265xa596tSpeuWVV/TVV1+pUaNGV92vt7e3vL29C7V7eno6/c3EjeN9RFlivKGsMeZQlhhvKGvlYcw5cnyX+p6r1q1bF5oaXLNmjZo3b2530q+//romTpyoL774Qs2bNy/rMgEAAADchJwarrKysrRz507t3LlT0qWl1nfu3KnU1FRJly7Xu3yFv8GDB+u3335TfHy8UlJSNH/+fM2bN08jR4609ZkyZYrGjBmj+fPnq3bt2kpPT1d6erqysrLK9uQAAAAA3FScGq62bdumyMhIRUZGSpLi4+MVGRmpcePGSZLS0tJsQUuS6tSpo9WrV2vt2rVq0qSJJk6cqLffftu2DLskzZw5U7m5uerevbuCg4Ntf6ZOnVq2JwcAAADgpuLUe67at29vW5CiKAsXLizUFhUVpe3btxe7zZEjR0yoDAAAAAAc41L3XAEAAABAeUW4AgAAAAATEK4AAAAAwASEKwAAAAAwAeEKAAAAAExAuAIAAAAAE1x3uPr111/15Zdf6vz585J01SXVAQAAAOCvzuFwdfLkSXXs2FF33HGHYmNjlZaWJkkaOHCg/v73v5teIAAAAAC4AofD1YgRI+Th4aHU1FT5+fnZ2nv27KkvvvjC1OIAAAAAwFV4OLrBmjVr9OWXX6pmzZp27bfffrt+++030woDAAAAAFfi8MzVuXPn7GasCmRkZMjb29uUogAAAADA1Tgcrtq1a6ekpCTbY4vFovz8fL3++uvq0KGDqcUBAAAAgKtw+LLA119/Xe3bt9e2bduUm5urUaNGac+ePfrzzz/13XfflUaNAAAAAFDuOTxzVa9ePe3evVstW7ZUdHS0zp07p4ceekg7duzQbbfdVho1AgAAAEC55/DMVWpqqkJDQzVhwoQinwsLCzOlMAAAAABwJQ7PXNWpU0cnTpwo1H7y5EnVqVPHlKIAAAAAwNU4HK4Mw5DFYinUnpWVJR8fH1OKAgAAAABXU+LLAuPj4yVdWh1w7Nixdsux5+Xl6fvvv1eTJk3MrxAAAAAAXECJw9WOHTskXZq5+umnn+Tl5WV7zsvLS40bN9bIkSPNrxAAAAAAXECJw9W3334rSXriiSf01ltvKTAwsNSKAgAAAABX4/BqgQsWLCiNOgAAAADApTkcriTphx9+0Mcff6zU1FTl5ubaPbd8+XJTCgMAAAAAV+LwaoFLly7VPffco71792rFihWyWq3au3evvvnmG1WsWLE0agQAAACAcs/hcPXKK69o2rRp+uyzz+Tl5aW33npLKSkp6tGjB18gDAAAAOCm5XC4OnjwoLp06SJJ8vb21rlz52SxWDRixAi9//77phcIAAAAAK7A4XBVpUoVnT17VpIUEhKin3/+WZJ0+vRpZWdnm1sdAAAAALgIhxe0aNu2rZKTk9WwYUP16NFDw4YN0zfffKPk5GT9v//3/0qjRgAAAAAo9xwOVzNmzNCFCxckSYmJifL09NTGjRv10EMPaezYsaYXCAAAAACuwOFwVaVKFdvf3dzcNGrUKI0aNcrUogAAAADA1Th8z1Vxtm/frvvvv9+s3QEAAACAS3EoXCUnJ+sf//iHnn/+eR06dEiStG/fPnXr1k0tWrTQxYsXS6VIAAAAACjvShyuFi1apJiYGC1YsECvvvqq7r77bi1evFgtW7ZU5cqVtWvXLn3xxRelWSsAAAAAlFslDlfTpk3TK6+8ooyMDC1dulQZGRmaNm2aduzYoQULFqhBgwalWScAAAAAlGslDlcHDx5Uz549JUndu3eXu7u73nzzTd12222lVhwAAAAAuIoSh6tz586pQoUKlzZyc5OPj49CQ0NLrTAAAAAAcCUOLcX+5ZdfqmLFipKk/Px8ff311/r555/t+jzwwAPmVQcAAAAALsKhcNWvXz+7x08//bTdY4vFory8vBuvCgAAAABcTInDVX5+fmnWAQAAAAAuzbQvEQYAAACAmxnhCgAAAABMQLgCAAAAABMQrgAAAADABIQrAAAAADDBdYWr06dPa+7cuUpMTNSff/4pSdq+fbuOHTtmanEAAAAA4Coc+p4rSdq9e7c6duyoihUr6siRIxo0aJCqVKmiFStW6LffflNSUlJp1AkAAAAA5ZrDM1fx8fHq37+/fvnlF/n4+NjaO3furPXr15taHAAAAAC4CofD1Q8//KCnn366UHtISIjS09NNKQoAAAAAXI3D4crHx0eZmZmF2vfv369q1aqZUhQAAAAAuBqHw1VcXJxeeuklWa1WSZLFYlFqaqoSEhL08MMPm14gAAAAALgCh8PV1KlTdeLECd166606f/68oqKiVLduXQUEBGjSpEmlUSMAAAAAlHsOrxYYGBiojRs36ptvvtH27duVn5+vpk2bqmPHjqVRHwAAAAC4hOv+EuG//e1vGjlypEaNGnXdwWr9+vXq2rWratSoIYvFopUrV15zm3Xr1qlZs2by8fFReHi4Zs+eXajPJ598onr16snb21v16tXTihUrrqs+AAAAACgph8PVc889p7fffrtQ+4wZMzR8+HCH9nXu3Dk1btxYM2bMKFH/w4cPKzY2Vm3bttWOHTv0/PPP67nnntMnn3xi67N582b17NlTffr00a5du9SnTx/16NFD33//vUO1AQAAAIAjHL4s8JNPPtGnn35aqL1NmzZ69dVXNX369BLvq3PnzurcuXOJ+8+ePVthYWG2Y0RERGjbtm2aOnWqbTGN6dOnKzo6WomJiZKkxMRErVu3TtOnT9eHH35Y4mOVG4YhZWdL584V38fdXbrsO8eu2tfNTfL1vb6+2dmX6imKxSL5+V1f3/Pnpfz84uuoUOH6+p49K6/Tp6XjxyVPz6v3vXBByssrfr9+fpfqlqScHOniRXP6+vpeep0lKTdX+u9CMTfc18fn0rhwtK/Veql/cby9JQ8Px/tevHjptSiOl9f/3iNH+ublXXrviuPpeam/o33z8y+NNUf6Wq1FjzcPj0uvhfS/f8/FcaSvI//u+Ywouu+1/t2X98+IK8ccnxGF+5anz4jiuMpnRMF4y8iQAgNLtl8+I/6HnyMuceQzws1N7hcuFD8OyimHw9XJkydVsWLFQu2BgYHKyMgwpajibN68WZ06dbJri4mJ0bx582S1WuXp6anNmzdrxIgRhfpcLfTl5OQo57IP6oKl5q1Wq21VRKc5d06elSs7twYX5Smp5NEduDGMN5Q1xhzKEuMNZc1T0v2Sso8flypVcmotjuQBh8NV3bp19cUXX+jZZ5+1a//Pf/6j8PBwR3fnkPT0dAUFBdm1BQUF6eLFi8rIyFBwcHCxfa72BceTJ0/WhAkTCrWvWbNGfpf/ZsQJ3C9c0P1OrQAAAABwjm+++UZ5l8+sOkH21WaJr+BwuIqPj9ezzz6rEydO6G9/+5sk6euvv9Ybb7zh0CWB18tSME36X8Z/pwovby+qz5Vtl0tMTFR8fLztcWZmpkJDQ9WpUycFXj717QyGIeupU1zycx19rWfPat033ygqKkqeXBZYsr5c8nPp79dxyY/VatW6desKjzdXueSnwE30GeHql/wUGnN8RhTuW44+I4rlIp8RtvHWoYM8uSzQ8b78HHGJA58RVjc3fbN+vf52//3yLPj35CQFV7WVhMPh6sknn1ROTo4mTZqkiRMnSpJq166tWbNmqW/fvo7uziHVq1cvNAN1/PhxeXh46JZbbrlqnytnsy7n7e0t74IPq8t4enoW/UN5WfPycmw6lL6XVKig3EqV5BkSUj7eR/y1Wa0lG2+OXObrSN/y8G/O1fq6upKOObiW8voZUTDegoPtx1t5+LfMZ8Rfk9WqPB8feXp5Of0zzpHjX9dS7EOGDNH//d//6Y8//lBmZqYOHTpU6sFKklq3bq3k5GS7tjVr1qh58+a2ky6uT5s2bUq9PgAAAAA3L4dnri5XrVq1Gzp4VlaWfv31V9vjw4cPa+fOnapSpYrCwsKUmJioY8eOKSkpSZI0ePBgzZgxQ/Hx8Ro0aJA2b96sefPm2a0COGzYMLVr106vvfaa4uLi9O9//1tfffWVNm7ceEO1AgAAAMDVODxz9ccff6hPnz6qUaOGPDw85O7ubvfHEdu2bVNkZKQiIyMlXbqfKzIyUuPGjZMkpaWlKTU11da/Tp06Wr16tdauXasmTZpo4sSJevvtt23LsEuXloRfunSpFixYoEaNGmnhwoX66KOP1KpVK0dPFQAAAABKzOGZq/79+ys1NVVjx45VcHDwVReKuJb27dvbFqQoysKFCwu1RUVFafv27Vfdb/fu3dW9e/frrgsAAAAAHOVwuNq4caM2bNigJk2alEY9AAAAAOCSHL4sMDQ09KqzTQAAAABwM3I4XE2fPl0JCQk6cuRIKZQDAAAAAK7J4csCe/bsqezsbN12223y8/MrtO77n3/+aVpxAAAAAOAqHA5X06dPL406AAAAAMClORyu+vXrVxp1AAAAAIBLc/ieK0k6ePCgxowZo8cee0zHjx+XJH3xxRfas2ePqcUBAAAAgKtwOFytW7dODRs21Pfff6/ly5crKytLkrR7926NHz/e9AIBAAAAwBU4HK4SEhL08ssvKzk5WV5eXrb2Dh06aPPmzaYWBwAAAACuwuFw9dNPP+nBBx8s1F6tWjWdPHnSlKIAAAAAwNU4HK4qVaqktLS0Qu07duxQSEiIKUUBAAAAgKtxOFz16tVLo0ePVnp6uiwWi/Lz8/Xdd99p5MiR6tu3b2nUCAAAAADlnsPhatKkSQoLC1NISIiysrJUr149tWvXTm3atNGYMWNKo0YAAAAAKPcc/p4rT09PLVmyRBMnTtT27duVn5+vyMhI3X777aVRHwAAAAC4BIfDVYHw8HCFh4crLy9PP/30k06dOqXKlSubWRsAAAAAuAyHLwscPny45s2bJ0nKy8tTVFSUmjZtqtDQUK1du9bs+gAAAADAJTgcrpYtW6bGjRtLklatWqVDhw5p3759Gj58uF544QXTCwQAAAAAV+BwuMrIyFD16tUlSatXr1aPHj10xx13aMCAAfrpp59MLxAAAAAAXIHD4SooKEh79+5VXl6evvjiC3Xs2FGSlJ2dLXd3d9MLBAAAAABX4PCCFk888YR69Oih4OBgWSwWRUdHS5K+//573XXXXaYXCAAAAACuwOFw9eKLL6pBgwY6evSoHnnkEXl7e0uS3N3dlZCQYHqBAAAAAOAKrmsp9u7du0uSLly4YGvr16+fORUBAAAAgAty+J6rvLw8TZw4USEhIfL399ehQ4ckSWPHjrUt0Q4AAAAANxuHw9WkSZO0cOFCTZkyRV5eXrb2hg0bau7cuaYWBwAAAACuwuFwlZSUpPfff1+9e/e2Wx2wUaNG2rdvn6nFAQAAAICrcDhcHTt2THXr1i3Unp+fL6vVakpRAAAAAOBqHA5X9evX14YNGwq1f/zxx4qMjDSlKAAAAABwNQ6vFjh+/Hj16dNHx44dU35+vpYvX679+/crKSlJn332WWnUCAAAAADlnsMzV127dtVHH32k1atXy2KxaNy4cUpJSdGqVatsXygMAAAAADcbh2au8vLytHHjRrVs2VLr1q0rrZoAAAAAwOU4NHPl7u6umJgYnT59urTqAQAAAACX5PBlgQ0bNrR9cTAAAAAA4JLr+hLhkSNH6rPPPlNaWpoyMzPt/gAAAADAzcjh1QLvu+8+SdIDDzwgi8ViazcMQxaLRXl5eeZVBwAAAAAuwuFw9c0339iFKgAAAADAdYSr9u3bl0IZAAAAAODaSnzPVXZ2tp555hmFhITo1ltvVa9evZSRkVGatQEAAACAyyhxuBo/frwWLlyoLl266NFHH1VycrKGDBlSmrUBAAAAgMso8WWBy5cv17x58/Too49Kkh5//HHdc889ysvLk7u7e6kVCAAAAACuoMQzV0ePHlXbtm1tj1u2bCkPDw/9/vvvpVIYAAAAALiSEoervLw8eXl52bV5eHjo4sWLphcFAAAAAK6mxJcFGoah/v37y9vb29Z24cIFDR48WBUqVLC1LV++3NwKAQAAAMAFlDhc9evXr1Db448/bmoxAAAAAOCqShyuFixYUJp1AAAAAIBLK/E9VwAAAACA4hGuAAAAAMAEhCsAAAAAMAHhCgAAAABMQLgCAAAAABMQrgAAAADABE4PVzNnzlSdOnXk4+OjZs2aacOGDVft/+677yoiIkK+vr668847lZSUVKjP9OnTdeedd8rX11ehoaEaMWKELly4UFqnAAAAAAAl/56r0vDRRx9p+PDhmjlzpu655x6999576ty5s/bu3auwsLBC/WfNmqXExETNmTNHLVq00NatWzVo0CBVrlxZXbt2lSQtWbJECQkJmj9/vtq0aaMDBw6of//+kqRp06aV5ekBAAAAuIk4debqzTff1IABAzRw4EBFRERo+vTpCg0N1axZs4rs/8EHH+jpp59Wz549FR4erkcffVQDBgzQa6+9ZuuzefNm3XPPPerVq5dq166tTp066bHHHtO2bdvK6rQAAAAA3IScFq5yc3P1448/qlOnTnbtnTp10qZNm4rcJicnRz4+PnZtvr6+2rp1q6xWqyTp3nvv1Y8//qitW7dKkg4dOqTVq1erS5cupXAWAAAAAHCJ0y4LzMjIUF5enoKCguzag4KClJ6eXuQ2MTExmjt3rrp166amTZvqxx9/1Pz582W1WpWRkaHg4GA9+uijOnHihO69914ZhqGLFy9qyJAhSkhIKLaWnJwc5eTk2B5nZmZKkqxWqy20wfUUvHe8hygLjDeUNcYcyhLjDWWtPI05R2pw6j1XkmSxWOweG4ZRqK3A2LFjlZ6errvvvluGYSgoKEj9+/fXlClT5O7uLklau3atJk2apJkzZ6pVq1b69ddfNWzYMAUHB2vs2LFF7nfy5MmaMGFCofY1a9bIz8/vBs8QzpacnOzsEnATYbyhrDHmUJYYbyhr5WHMZWdnl7ivxTAMoxRrKVZubq78/Pz08ccf68EHH7S1Dxs2TDt37tS6deuK3dZqteqPP/5QcHCw3n//fY0ePVqnT5+Wm5ub2rZtq7vvvluvv/66rf/ixYv11FNPKSsrS25uha+ELGrmKjQ0VBkZGQoMDDTpjFHWrFarkpOTFR0dLU9PT2eXg784xhvKGmMOZYnxhrJWnsZcZmamqlatqjNnzlwzGzht5srLy0vNmjVTcnKyXbhKTk5WXFzcVbf19PRUzZo1JUlLly7V/fffbwtN2dnZhQKUu7u7DMNQcTnS29tb3t7eRR7H2W8mbhzvI8oS4w1ljTGHssR4Q1krD2POkeM79bLA+Ph49enTR82bN1fr1q31/vvvKzU1VYMHD5YkJSYm6tixY7bvsjpw4IC2bt2qVq1a6dSpU3rzzTf1888/a9GiRbZ9du3aVW+++aYiIyNtlwWOHTtWDzzwgO3SQQAAAAAwm1PDVc+ePXXy5Em99NJLSktLU4MGDbR69WrVqlVLkpSWlqa48JhxAAAYOklEQVTU1FRb/7y8PL3xxhvav3+/PD091aFDB23atEm1a9e29RkzZowsFovGjBmjY8eOqVq1auratasmTZpU1qcHAAAA4Cbi9AUthg4dqqFDhxb53MKFC+0eR0REaMeOHVfdn4eHh8aPH6/x48ebVSIAAAAAXJNTv0QYAAAAAP4qCFcAAAAAYALCFQAAAACYgHAFAAAAACYgXAEAAACACQhXAAAAAGACwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYgHAFAAAAACYgXAEAAACACQhXAAAAAGACwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYgHAFAAAAACYgXAEAAACACQhXAAAAAGACwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYgHAFAAAAACYgXAEAAACACQhXAAAAAGACwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYwOnhaubMmapTp458fHzUrFkzbdiw4ar93333XUVERMjX11d33nmnkpKSCvU5ffq0nnnmGQUHB8vHx0cRERFavXp1aZ0CAAAAAMjDmQf/6KOPNHz4cM2cOVP33HOP3nvvPXXu3Fl79+5VWFhYof6zZs1SYmKi5syZoxYtWmjr1q0aNGiQKleurK5du0qScnNzFR0drVtvvVXLli1TzZo1dfToUQUEBJT16QEAAAC4iTg1XL355psaMGCABg4cKEmaPn26vvzyS82aNUuTJ08u1P+DDz7Q008/rZ49e0qSwsPDtWXLFr322mu2cDV//nz9+eef2rRpkzw9PSVJtWrVKqMzAgAAAHCzclq4ys3N1Y8//qiEhAS79k6dOmnTpk1FbpOTkyMfHx+7Nl9fX23dulVWq1Wenp769NNP1bp1az3zzDP697//rWrVqqlXr14aPXq03N3di91vTk6O7XFmZqYkyWq1ymq13shpwokK3jveQ5QFxhvKGmMOZYnxhrJWnsacIzU4LVxlZGQoLy9PQUFBdu1BQUFKT08vcpuYmBjNnTtX3bp1U9OmTfXjjz9q/vz5slqtysjIUHBwsA4dOqRvvvlGvXv31urVq/XLL7/omWee0cWLFzVu3Lgi9zt58mRNmDChUPuaNWvk5+d34ycLp0pOTnZ2CbiJMN5Q1hhzKEuMN5S18jDmsrOzS9zXqZcFSpLFYrF7bBhGobYCY8eOVXp6uu6++24ZhqGgoCD1799fU6ZMsc1K5efn69Zbb9X7778vd3d3NWvWTL///rtef/31YsNVYmKi4uPjbY8zMzMVGhqqTp06KTAw0KQzRVmzWq1KTk5WdHS07RJRoLQw3lDWGHMoS4w3lLXyNOYKrmorCaeFq6pVq8rd3b3QLNXx48cLzWYV8PX11fz58/Xee+/pjz/+UHBwsN5//30FBASoatWqkqTg4GB5enraXQIYERGh9PR05ebmysvLq9B+vb295e3tXajd09PT6W8mbhzvI8oS4w1ljTGHssR4Q1krD2POkeM7bSl2Ly8vNWvWrNBUX3Jystq0aXPVbT09PVWzZk25u7tr6dKluv/+++XmdulU7rnnHv3666/Kz8+39T9w4ICCg4OLDFYAAAAAYAanfs9VfHy85s6dq/nz5yslJUUjRoxQamqqBg8eLOnS5Xp9+/a19T9w4IAWL16sX375RVu3btWjjz6qn3/+Wa+88oqtz5AhQ3Ty5EkNGzZMBw4c0Oeff65XXnlFzzzzTJmfHwAAAICbh1PvuerZs6dOnjypl156SWlpaWrQoIFWr15tWzo9LS1Nqamptv55eXl64403tH//fnl6eqpDhw7atGmTateubesTGhqqNWvWaMSIEWrUqJFCQkI0bNgwjR49uqxPDwAAAMBNxOkLWgwdOlRDhw4t8rmFCxfaPY6IiNCOHTuuuc/WrVtry5YtZpQHAAAAACXi1MsCAQAAAOCvgnAFAAAAACYgXAEAAACACQhXAAAAAGACwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYgHAFAAAAACYgXAEAAACACQhXAAAAAGACwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYgHAFAAAAACYgXAEAAACACQhXAAAAAGACwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYgHAFAAAAACYgXAEAAACACTycXUB5ZBiGJCkzM9PJleBGWK1WZWdnKzMzU56ens4uB39xjDeUNcYcyhLjDWWtPI25gkxQkBGuhnBVhLNnz0qSQkNDnVwJAAAAgPLg7Nmzqlix4lX7WIySRLCbTH5+vn7//XcFBATIYrE4uxxcp8zMTIWGhuro0aMKDAx0djn4i2O8oawx5lCWGG8oa+VpzBmGobNnz6pGjRpyc7v6XVXMXBXBzc1NNWvWdHYZMElgYKDT/1Hi/7d370FRlX8YwJ/l4gKiIia7bLmg4W0RuQSkkAoMJinkndsIomPj5BRCiphXtISwkBJGlCyZUZvSAlEnRDAn8W7AKiEqFmgpxow6mlKA7Pn94bC5soj2WzmxPJ8ZZjrnPec9z3t6Z53vvGfPdh+cb9TZOOeoM3G+UWf7r8y5jlasWvGFFkRERERERAbA4oqIiIiIiMgATJOSkpLEDkH0vJiamsLPzw9mZnwClp4/zjfqbJxz1Jk436izdcU5xxdaEBERERERGQAfCyQiIiIiIjIAFldEREREREQGwOKKiIiIiIjIAFhcERERERERGQCLKzI6165dw6xZs9CvXz9YWVnBzc0NpaWlYsciI/XgwQOsWLECAwcOhKWlJQYNGoS1a9dCo9GIHY2MxJEjRxASEgKFQgGJRII9e/botAuCgKSkJCgUClhaWsLPzw+VlZUipaWu7knzrbm5GYmJiXBxcUHPnj2hUCgQHR2N69evi5iYurqOPuMeNX/+fEgkEnz66aedmPDZsLgio3L79m34+vrC3NwcBQUFOH/+PNLS0mBjYyN2NDJSqamp2Lx5MzIzM1FVVYX169fj448/RkZGhtjRyEjcv38frq6uyMzM1Nu+fv16bNiwAZmZmThz5gzkcjnGjx+PP//8s5OTkjF40nxraGhAWVkZVq5cibKyMuTm5uLSpUt48803RUhKxqKjz7hWe/bswalTp6BQKDop2b/DV7GTUVm6dCmOHTuGkpISsaNQNxEcHAyZTIYvvvhCu2/69OmwsrLC9u3bRUxGxkgikSAvLw9TpkwB8HDVSqFQIC4uDomJiQCAxsZGyGQypKamYv78+WLGpS7u8fmmz5kzZ+Dt7Y0rV65AqVR2YjoyRu3NuWvXruHVV19FYWEhJk2ahLi4OMTFxYmU8sm4ckVGZe/evfD09MTMmTNhZ2cHd3d3fP7552LHIiP22muv4dChQ7h06RIA4OzZszh69CgmTpwocjLqDmpqanDjxg28/vrr2n1SqRTjxo3D8ePHRUxG3cWdO3cgkUj4hAg9NxqNBlFRUUhISICzs7PYcTrUdX7umOgp/Prrr8jKysJ7772HZcuW4fTp04iNjYVUKkV0dLTY8cgIJSYm4s6dOxg2bBhMTU3R0tKCdevWISIiQuxo1A3cuHEDACCTyXT2y2QyXLlyRYxI1I38/fffWLp0KSIjI9G7d2+x45CRSk1NhZmZGWJjY8WO8lRYXJFR0Wg08PT0RHJyMgDA3d0dlZWVyMrKYnFFz8U333yDHTt24KuvvoKzszPUajXi4uKgUCgwe/ZsseNRNyGRSHS2BUFos4/IkJqbmxEeHg6NRoNNmzaJHYeMVGlpKT777DOUlZV1mc80PhZIRsXe3h4qlUpn3/Dhw3H16lWREpGxS0hIwNKlSxEeHg4XFxdERUUhPj4eKSkpYkejbkAulwP4ZwWrVX19fZvVLCJDaW5uRmhoKGpqalBUVMRVK3puSkpKUF9fD6VSCTMzM5iZmeHKlStYtGgRHB0dxY6nF4srMiq+vr64ePGizr5Lly7BwcFBpERk7BoaGmBiovtRampqylexU6cYOHAg5HI5ioqKtPuamprw448/wsfHR8RkZKxaC6vq6moUFxejX79+YkciIxYVFYVz585BrVZr/xQKBRISElBYWCh2PL34WCAZlfj4ePj4+CA5ORmhoaE4ffo0srOzkZ2dLXY0MlIhISFYt24dlEolnJ2dUV5ejg0bNmDu3LliRyMjce/ePVy+fFm7XVNTA7VaDVtbWyiVSsTFxSE5ORmDBw/G4MGDkZycDCsrK0RGRoqYmrqqJ803hUKBGTNmoKysDPv370dLS4t21dTW1hY9evQQKzZ1YR19xj1ewJubm0Mul2Po0KGdHfXpCERGZt++fcKIESMEqVQqDBs2TMjOzhY7Ehmxu3fvCgsXLhSUSqVgYWEhDBo0SFi+fLnQ2NgodjQyEocPHxYAtPmbPXu2IAiCoNFohNWrVwtyuVyQSqXC2LFjhYqKCnFDU5f1pPlWU1Ojtw2AcPjwYbGjUxfV0Wfc4xwcHIT09PTODfkM+DtXREREREREBsDvXBERERERERkAiysiIiIiIiIDYHFFRERERERkACyuiIiIiIiIDIDFFRERERERkQGwuCIiIiIiIjIAFldEREREREQGwOKKiIiIiIjIAFhcERHRvyaRSLBnzx6xYzwXTU1NcHJywrFjx8SO8tRycnJgY2Pzf/fz6P/X+vp69O/fH9euXfu/+yUiMnYsroiISEdMTAwkEgkkEgnMzc0hk8kwfvx4fPnll9BoNDrH1tXV4Y033niqfrtaIZadnQ0HBwf4+vpq97XeF4lEAmtra7i6uiInJ0e8kJ3Azs4OUVFRWL16tdhRiIj+81hcERFRG0FBQairq0NtbS0KCgrg7++PhQsXIjg4GA8ePNAeJ5fLIZVKRUz6/GRkZGDevHlt9m/btg11dXU4e/YswsLCMGfOHBQWFoqQsPPMmTMHO3fuxO3bt8WOQkT0n8biioiI2pBKpZDL5XjxxRfh4eGBZcuWIT8/HwUFBTorNY+uRjU1NeGdd96Bvb09LCws4OjoiJSUFACAo6MjAGDq1KmQSCTa7V9++QWTJ0+GTCaDtbU1vLy8UFxcrJPF0dERycnJmDt3Lnr16gWlUons7GydY37//XeEh4fD1tYWPXv2hKenJ06dOqVt37dvH1555RVYWFhg0KBBWLNmjU6R+LiysjJcvnwZkyZNatNmY2MDuVyOl19+GcuWLYOtrS0OHjyoc8x3330HZ2dnSKVSODo6Ii0tTadd3yqejY2N9t7W1tZCIpEgNzcX/v7+sLKygqurK06cOKFzTk5ODpRKJaysrDB16lTcvHmzTd6Oxl5dXY2xY8fCwsICKpUKRUVFbfpwcXGBXC5HXl5eu/eMiIhYXBER0VMKCAiAq6srcnNz9bZv3LgRe/fuxa5du3Dx4kXs2LFDW0SdOXMGwD+rPq3b9+7dw8SJE1FcXIzy8nJMmDABISEhuHr1qk7faWlp8PT0RHl5ORYsWIC3334bFy5c0PYxbtw4XL9+HXv37sXZs2exZMkS7SOMhYWFmDVrFmJjY3H+/Hls2bIFOTk5WLduXbtjPXLkCIYMGYLevXu3e0xLSwt27dqFW7duwdzcXLu/tLQUoaGhCA8PR0VFBZKSkrBy5cp/9fjg8uXLsXjxYqjVagwZMgQRERHawujUqVOYO3cuFixYALVaDX9/f3z44Yc653c0do1Gg2nTpsHU1BQnT57E5s2bkZiYqDeLt7c3SkpKnnkMRETdikBERPSI2bNnC5MnT9bbFhYWJgwfPly7DUDIy8sTBEEQ3n33XSEgIEDQaDR6z3302CdRqVRCRkaGdtvBwUGYNWuWdluj0Qh2dnZCVlaWIAiCsGXLFqFXr17CzZs39fY3ZswYITk5WWff9u3bBXt7+3YzLFy4UAgICNA7BgsLC6Fnz56CqampAECwtbUVqqurtcdERkYK48eP1zkvISFBUKlUOv08fi/69OkjbNu2TRAEQaipqREACFu3btW2V1ZWCgCEqqoqQRAEISIiQggKCtLpIywsTOjTp89Tj72wsFAwNTUVfvvtN217QUGB3nzx8fGCn59fm3tCRET/4MoVERE9NUEQIJFI9LbFxMRArVZj6NChiI2NbfOonD7379/HkiVLoFKpYGNjA2tra1y4cKHNytXIkSO1/y2RSCCXy1FfXw8AUKvVcHd3h62trd5rlJaWYu3atbC2ttb+vfXWW6irq0NDQ4Pec/766y9YWFjobUtPT4darUZRURHc3NyQnp4OJycnbXtVVZXOSzAAwNfXF9XV1WhpaenwnrQ3bnt7ewDQjruqqgqjR4/WOf7x7Y7GXlVVBaVSiZdeeqndPlpZWlq2e7+IiOghM7EDEBFR11FVVYWBAwfqbfPw8EBNTQ0KCgpQXFyM0NBQBAYG4ttvv223v4SEBBQWFuKTTz6Bk5MTLC0tMWPGDDQ1Nekc9+hjd8DDAqv1sT9LS8snZtZoNFizZg2mTZvWpq29AuqFF15ARUWF3ja5XA4nJyc4OTlh9+7dcHd3h6enJ1QqFQD9BaggCG3yP76vubm5zbUeHXdrn63jfvx8fToau74+2iueb926hf79+3d4TSKi7ozFFRERPZUffvgBFRUViI+Pb/eY3r17IywsDGFhYZgxYwaCgoJw69Yt2NrawtzcvM3KTUlJCWJiYjB16lQAD78/VVtb+0y5Ro4cia1bt2qv8zgPDw9cvHhRZ3WpI+7u7sjKynriSh0AODk5Yfr06Xj//feRn58PAFCpVDh69KjOccePH8eQIUNgamoKAOjfvz/q6uq07dXV1c+8KqRSqXDy5EmdfY9vdzR2lUqFq1ev4vr161AoFADQ5qUZrX7++Wf4+fk9U0Yiou6GxRUREbXR2NiIGzduoKWlBX/88QcOHDiAlJQUBAcHIzo6Wu856enpsLe3h5ubG0xMTLB7927I5XLtj9o6Ojri0KFD8PX1hVQqRd++feHk5ITc3FyEhIRAIpFg5cqVbX5LqyMRERFITk7GlClTkJKSAnt7e5SXl0OhUGD06NFYtWoVgoODMWDAAMycORMmJiY4d+4cKioq2rwAopW/vz/u37+PyspKjBgx4onXX7RoEVxdXfHTTz/B09MTixYtgpeXFz744AOEhYXhxIkTyMzMxKZNm7TnBAQEIDMzE6NGjYJGo0FiYmKb1bmOxMbGwsfHB+vXr8eUKVNw8OBBHDhwQOeYjsYeGBiIoUOHIjo6Gmlpabh79y6WL1/e5loNDQ0oLS1FcnLyM2UkIupu+J0rIiJq48CBA7C3t4ejoyOCgoJw+PBhbNy4Efn5+drVl8dZW1sjNTUVnp6e8PLyQm1tLb7//nuYmDz8pyYtLQ1FRUUYMGAA3N3dATwsyPr27QsfHx+EhIRgwoQJ8PDweKasPXr0wMGDB2FnZ4eJEyfCxcUFH330kTbnhAkTsH//fhQVFcHLywujRo3Chg0b4ODg0G6f/fr1w7Rp07Bz584Or+/i4oLAwECsWrUKwMPVol27duHrr7/GiBEjsGrVKqxduxYxMTHac9LS0jBgwACMHTsWkZGRWLx4MaysrJ5p3KNGjcLWrVuRkZEBNzc3HDx4ECtWrNA5pqOxm5iYIC8vD42NjfD29sa8efP0vkUxPz8fSqUSY8aMeaaMRETdjUR4moe2iYiIupmKigoEBgbi8uXL6NWrl9hxROXt7Y24uDhERkaKHYWI6D/NNCkpKUnsEERERP81MpkMdnZ2sLS0hEwmEzuOaOrr69HU1IT58+c/8ftnRETElSsiIiIiIiKD4HeuiIiIiIiIDIDFFRERERERkQGwuCIiIiIiIjIAFldEREREREQGwOKKiIiIiIjIAFhcERERERERGQCLKyIiIiIiIgNgcUVERERERGQALK6IiIiIiIgM4H9WnO5AYER20gAAAABJRU5ErkJggg==",
+ "text/plain": [
+ "