-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun.py
176 lines (133 loc) · 5.61 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import torch
import numpy as np
import pandas as pd
import json
import fire
import os
#from datasets import load_dataset
from huggingface_hub import login
from transformers import AutoModelForCausalLM, AutoTokenizer
# 4.48.0
from transformers import MllamaForConditionalGeneration,MllamaProcessor
from transformers import LlavaOnevisionForConditionalGeneration, AutoProcessor
from openai import OpenAI
# TODO: 구현하기
from dataset.kmmbench import kmmbench_eval
from dataset.kmmstar import kmmstar_eval
from dataset.kdtcbench import kdtcbench_eval
from dataset.kllavaw import kllavaw_eval
#os.environ["CUDA_VISIBLE_DEVICES"] = "4"
# NCSOFT/K-MMBench
# NCSOFT/K-MMStar
# NCSOFT/K-DTCBench
# NCSOFT/K-LLaVA-W
# Bllossom/llama-3.2-Korean-Bllossom-AICA-5B
# NCSOFT/VARCO-VISION-14B-HF
# AIDC-AI/Ovis1.6-Gemma2-9B
# gpt-4o-2024-11-20
# AIDC-AI/Ovis2-34B
def main(
dataset = '...dataset.',
base_model = '...model...',
cutoff_len = 2048,
api_key = '...your_api...'
):
login(token='...your_token...')
# Load dataset
#eval_dataset = load_dataset(dataset)
## Model loading
device_map = 'auto'
if ('Ovis' in base_model) or ('Gukbap' in base_model):
print(base_model)
model = AutoModelForCausalLM.from_pretrained(
base_model,
device_map=device_map,
cache_dir="/data/cache/", # database 폴더로 전송
torch_dtype=torch.float16,
trust_remote_code=True,
multimodal_max_length=cutoff_len # 2048
)
text_tokenizer = model.get_text_tokenizer()
visual_tokenizer = model.get_visual_tokenizer()
# TODO: evaluation script 만들기
elif 'gpt' in base_model:
print(base_model)
model = base_model # name
elif 'Bllossom' in base_model:
print(base_model)
model = MllamaForConditionalGeneration.from_pretrained(
base_model,
torch_dtype=torch.bfloat16,
cache_dir='/data/cache',
device_map=device_map
)
processor = MllamaProcessor.from_pretrained(base_model)
elif 'VARCO' in base_model:
print(base_model)
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
base_model,
torch_dtype="float16",
device_map=device_map,
cache_dir='/data/cache',
#attn_implementation="flash_attention_2"
)
processor = AutoProcessor.from_pretrained(base_model, device_map=device_map)
else:
raise Exception("Not implementation!!")
### Evaluation
# 4329개
if 'K-MMBench' in dataset:
eval_dataset = pd.read_parquet("./data/kmmbench/dev-00000-of-00001.parquet")
if ('Ovis' in base_model) or ('Gukbap' in base_model):
average = kmmbench_eval(eval_dataset, model, text_tokenizer, visual_tokenizer, 'ovis')
elif 'Bllossom' in base_model:
average = kmmbench_eval(eval_dataset, model, processor, None, 'bllossom')
elif 'VARCO' in base_model:
average = kmmbench_eval(eval_dataset, model, processor, None, 'VARCO')
elif 'GPT' in base_model:
pass
print("### KoMMBench score:", average*100)
# TODO: MMStar 구현하기
# 1,500개
elif 'K-MMStar' in dataset:
eval_dataset = pd.read_parquet("./data/kmmstar/val-00000-of-00001.parquet")
if ('Ovis' in base_model) or ('Gukbap' in base_model):
average = kmmstar_eval(eval_dataset, model, text_tokenizer, visual_tokenizer, 'ovis')
elif 'Bllossom' in base_model:
average = kmmstar_eval(eval_dataset, model, processor, None, 'bllossom')
elif 'VARCO' in base_model:
average = kmmstar_eval(eval_dataset, model, processor, None, 'VARCO')
elif 'GPT' in base_model:
pass
print("### K-MMStar score:", average*100)
elif 'K-DTCBench' in dataset:
eval_dataset = pd.read_parquet("./data/kdtcbench/test-00000-of-00001.parquet")
if ('Ovis' in base_model) or ('Gukbap' in base_model):
average = kdtcbench_eval(eval_dataset, model, text_tokenizer, visual_tokenizer, 'ovis')
elif 'Bllossom' in base_model:
average = kdtcbench_eval(eval_dataset, model, processor, None, 'bllossom')
elif 'VARCO' in base_model:
average = kdtcbench_eval(eval_dataset, model, processor, None, 'VARCO')
elif 'GPT' in base_model:
pass
print("### K-DTCBench score:", average*100)
elif 'K-LLaVA-W' in dataset:
eval_dataset = pd.read_parquet("./data/kllavaw/test-00000-of-00001.parquet")
# openai key
client = OpenAI(
api_key=api_key
)
if ('Ovis' in base_model) or ('Gukbap' in base_model):
average = kllavaw_eval(eval_dataset, model, text_tokenizer, visual_tokenizer, 'ovis', client)
elif 'Bllossom' in base_model:
average = kllavaw_eval(eval_dataset, model, processor, None, 'bllossom', client)
elif 'VARCO' in base_model:
average = kllavaw_eval(eval_dataset, model, processor, None, 'VARCO', client)
elif 'gpt' in base_model:
average = kllavaw_eval(eval_dataset, model, None, None, 'GPT', client)
print("### K-LLABA-W score:", average*10)
else:
raise Exception("### Not implementation!!")
if __name__ == '__main__':
torch.cuda.empty_cache()
fire.Fire(main)