-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtime_frequency.py
39 lines (28 loc) · 1.19 KB
/
time_frequency.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import nnAudio.Spectrogram as Spec
from plots import plot_cqt
from parameters import *
if USE_CQT:
cqt_layer = Spec.CQT(sr=FS, hop_length=HOP_LENGTH, fmin=F_MIN, n_bins=N_BINS, bins_per_octave=BINS_PER_OCTAVE,
norm=NORM, pad_mode='constant', window=WINDOW)
cqt_layer.to(DEVICE)
def cqt(signal, numpy=True, db=True):
time_array = np.arange(np.ceil(signal.size / HOP_LENGTH).astype(int)) / (FS / HOP_LENGTH)
signal_tensor = torch.tensor(signal, device=DEVICE, dtype=torch.float)
cqt_tensor = cqt_layer(signal_tensor, normalization_type='wrap')
if db:
cqt_tensor = 20 * torch.log10(cqt_tensor + EPS)
if numpy:
cqt_array = cqt_tensor.cpu().numpy()[0, :, :]
torch.cuda.empty_cache()
return cqt_array, time_array
else:
# time_tensor = torch.tensor(time_array)
return cqt_tensor[0, :, :], time_array
if __name__ == '__main__':
_signal = np.zeros(FS*2)
dirac_width = 1
for i in range(dirac_width):
_signal[i::int(FS*0.033)] = 1
_signal += 0.1 * np.sin(2*np.pi*440*np.arange(FS*2) / FS)
_spectrogram, _time_array = cqt(_signal)
plot_cqt(_spectrogram, _time_array, v_min=-100)