-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathhyper_param_tuning.py
413 lines (346 loc) · 15.6 KB
/
hyper_param_tuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
import os
import numpy as np
import pickle
import math
import torch
import ray
from ray import train, tune
from ray.tune.schedulers import ASHAScheduler
from ray.tune.search.optuna import OptunaSearch
from ray.experimental.tqdm_ray import tqdm
from ray.tune.search.bayesopt import BayesOptSearch
from optuna.samplers import TPESampler
from sgg_benchmark.config import cfg
from sgg_benchmark.data import make_data_loader
from sgg_benchmark.solver import make_lr_scheduler
from sgg_benchmark.solver import make_optimizer
from sgg_benchmark.engine.trainer import reduce_loss_dict
from sgg_benchmark.engine.inference import inference
from sgg_benchmark.modeling.detector import build_detection_model
from sgg_benchmark.utils.checkpoint import DetectronCheckpointer
from sgg_benchmark.utils.comm import synchronize, get_rank
from sgg_benchmark.utils.logger import setup_logger, logger_step
from sgg_benchmark.utils.miscellaneous import mkdir, save_config
from sgg_benchmark.utils.parser import default_argument_parser
METRICS = {"mR": "_mean_recall", "R": "_recall", "zR": "_zeroshot_recall", "ng-zR": "_ng_zeroshot_recall", "ng-R": "_recall_nogc", "ng-mR": "_ng_mean_recall", "f1": "_f1_score", "topA": ["_accuracy_hit", "_accuracy_count"]}
def train_relation_net(config):
model, optimizer, train_data_loader, val_data_loaders, device, logger, cfg, scaler, max_iter = setup(config)
mode = get_mode(cfg)
metric_to_track = METRICS["f1"]
logger.info("Start training for %d iterations" % max_iter)
# check if "use_amp" key is in config["tuning_config"]
if "use_amp" not in config["tuning_config"]:
use_amp = True
else:
use_amp = config["tuning_config"]["use_amp"]
for epoch in range(0, config["tuning_config"]["max_epoch"]):
iter = 0
if cfg.MODEL.META_ARCHITECTURE == "GeneralizedRCNN":
model.train()
eval_modules = (model.rpn, model.backbone, model.roi_heads.box,)
fix_eval_modules(eval_modules)
else:
model.roi_heads.train()
model.backbone.eval()
pbar = tqdm(total=max_iter)
for images, targets, _ in train_data_loader:
iter += 1
if iter > max_iter:
break
pbar.update(1)
if any(len(target) < 1 for target in targets):
logger.error(f"Epoch={epoch} || Image Ids used for training {_} || targets Length={[len(target) for target in targets]}" )
continue
images = images.to(device)
targets = [target.to(device) for target in targets]
# Note: If mixed precision is not used, this ends up doing nothing
with torch.autocast(device_type='cuda', dtype=torch.float16, enabled=use_amp):
loss_dict = model(images, targets)
losses = sum(loss for loss in loss_dict.values())
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = reduce_loss_dict(loss_dict)
losses_reduced = sum(loss for loss in loss_dict_reduced.values())
optimizer.zero_grad()
# Scaling loss
scaler.scale(losses).backward()
# Unscale the gradients of optimizer's assigned params in-place before cliping
scaler.unscale_(optimizer)
# fallback to native clipping, if no clip_grad_norm is used
torch.nn.utils.clip_grad_norm_([p for _, p in model.named_parameters() if p.requires_grad], max_norm=cfg.SOLVER.GRAD_NORM_CLIP)
scaler.step(optimizer)
scaler.update()
# get memory used from cuda
if torch.cuda.is_available():
max_mem = torch.cuda.max_memory_allocated() / 1024.0 / 1024.0
pbar.set_description(f"Epoch={epoch} | Loss={losses_reduced.item():.2f} | Mem={max_mem:.2f}MB")
losses_report = float(losses_reduced.item())
# train.report({"loss": losses_report},)
current_metric = None
val_result = run_val(cfg, model, val_data_loaders, False, logger)
if mode+metric_to_track not in val_result.keys():
logger.error("Metric to track not found in validation result, default to R")
metric_to_track = "_recall"
results = val_result[mode+metric_to_track]
current_metric = float(np.mean(list(results.values())))
train.report({"loss": losses_report, "f1_score": current_metric},)
def setup(config):
config_file = config["config_path"]
cfg.merge_from_file(config_file)
cfg.merge_from_list(config["opts"])
if "model_config" in config:
# config["model_config"] to list
conf_model = []
for k, v in config["model_config"].items():
conf_model.append(k)
conf_model.append(v)
print(conf_model)
cfg.merge_from_list(conf_model)
if config["task"]:
assert_mode(cfg,config["task"])
cfg.SOLVER.IMS_PER_BATCH = config["tuning_config"]["batch_size"] if "batch_size" in config["tuning_config"] else cfg.SOLVER.IMS_PER_BATCH
cfg.MODEL.ROI_RELATION_HEAD.CONTEXT_POOLING_DIM = cfg.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM
output_dir = cfg.OUTPUT_DIR
if output_dir:
mkdir(output_dir)
logger = setup_logger("sgg_benchmark", output_dir, get_rank(), verbose="WARNING", steps=True)
tuning_config = config["tuning_config"]
# logger_step(logger, 'Building model...')
model = build_detection_model(cfg)
# Model eval mode settings
if cfg.MODEL.META_ARCHITECTURE == "GeneralizedRCNN":
eval_modules = (model.rpn, model.backbone, model.roi_heads.box,)
fix_eval_modules(eval_modules)
else:
model.backbone.eval()
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model.to(device)
# Optimizer and scheduler setup
cfg.SOLVER.BASE_LR = tuning_config["lr"] if "lr" in tuning_config else cfg.SOLVER.BASE_LR
cfg.SOLVER.MOMENTUM = tuning_config["momentum"] if tuning_config["optimizer"] == "SGD" else cfg.SOLVER.MOMENTUM
cfg.SOLVER.WEIGHT_DECAY = tuning_config["decay"] if tuning_config["optimizer"] == "ADAMW" else cfg.SOLVER.WEIGHT_DECAY
cfg.SOLVER.OPTIMIZER = tuning_config["optimizer"] if "optimizer" in tuning_config else cfg.SOLVER.OPTIMIZER
if "num_images" in tuning_config:
max_iter = tuning_config["num_images"] // cfg.SOLVER.IMS_PER_BATCH
else:
max_iter = cfg.SOLVER.MAX_ITER
optimizer = make_optimizer(cfg, model, logger, rl_factor=float(cfg.SOLVER.IMS_PER_BATCH))
scheduler = make_lr_scheduler(cfg, optimizer, logger)
# Initialize mixed-precision training
if "use_amp" not in config["tuning_config"]:
use_amp = True
else:
use_amp = tuning_config["use_amp"]
scaler = torch.cuda.amp.GradScaler(enabled=use_amp)
# # DistributedDataParallel setup
# if args['distributed']:
# model = torch.nn.parallel.DistributedDataParallel(
# model, device_ids=[args['local_rank']], output_device=args['local_rank'],
# broadcast_buffers=False,
# find_unused_parameters=True,
# )
# Checkpointer
save_to_disk = get_rank() == 0
checkpointer = DetectronCheckpointer(
cfg, model, optimizer, scheduler, output_dir, save_to_disk, custom_scheduler=True
)
model.backbone.load(cfg.MODEL.PRETRAINED_DETECTOR_CKPT)
model.backbone.model.to(device)
# Data loaders
train_data_loader = make_data_loader(
cfg, mode='train', is_distributed=False, start_iter=0,
)
val_data_loaders = make_data_loader(
cfg, mode='val', is_distributed=False, start_iter=0,
)
# print the size of val_data_loaders[0]
print(f"Size of val_data_loaders[0]: {len(val_data_loaders[0].dataset)}")
return model, optimizer, train_data_loader, val_data_loaders, device, logger, cfg, scaler, max_iter
def fix_eval_modules(eval_modules):
for module in eval_modules:
# module.model.eval()
for _, param in module.named_parameters():
param.requires_grad = False
def run_val(cfg, model, val_data_loaders, distributed, logger, device=None):
if distributed:
model = model.module
torch.cuda.empty_cache()
iou_types = ("bbox",)
if cfg.MODEL.RELATION_ON:
iou_types = iou_types + ("relations", )
if cfg.MODEL.ATTRIBUTE_ON:
iou_types = iou_types + ("attributes", )
dataset_names = cfg.DATASETS.VAL
val_result = []
for dataset_name, val_data_loader in zip(dataset_names, val_data_loaders):
dataset_result = inference(
cfg,
model,
val_data_loader,
dataset_name=dataset_name,
iou_types=iou_types,
box_only=cfg.MODEL.RPN_ONLY,
device=cfg.MODEL.DEVICE,
expected_results=cfg.TEST.EXPECTED_RESULTS,
expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL,
output_folder=None,
logger=logger,
informative=cfg.TEST.INFORMATIVE,
silence=True,
)
synchronize()
val_result.append(dataset_result)
# VG has only one val dataset
dataset_result = val_result[0]
if len(dataset_result) == 1:
return dataset_result
if distributed:
for k1, v1 in dataset_result.items():
for k2, v2 in v1.items():
dataset_result[k1][k2] = torch.distributed.all_reduce(torch.tensor(np.mean(v2)).to(device).unsqueeze(0)).item() / torch.distributed.get_world_size()
else:
for k1, v1 in dataset_result.items():
if type(v1) != dict or type(v1) != list:
dataset_result[k1] = v1
continue
for k2, v2 in v1.items():
if isinstance(v2, list):
# mean everything
v2 = [np.mean(v) for v in v2]
dataset_result[k1][k2] = np.mean(v2)
return dataset_result
def get_mode(cfg):
task = "sgdet"
if cfg.MODEL.ROI_RELATION_HEAD.USE_GT_BOX == True:
task = "sgcls"
if cfg.MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL == True:
task = "predcls"
return task
def assert_mode(cfg, task):
cfg.MODEL.ROI_RELATION_HEAD.USE_GT_BOX = False
cfg.MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL = False
if task == "sgcls" or task == "predcls":
cfg.MODEL.ROI_RELATION_HEAD.USE_GT_BOX = True
if task == "predcls":
cfg.MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL = True
def main():
args = default_argument_parser()
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
args.distributed = num_gpus > 1
ray.init(
_system_config={
# Allow spilling until the local disk is 99% utilized.
# This only affects spilling to the local file system.
"local_fs_capacity_threshold": 0.99,
},
)
max_epoch = 5 # Max number of epochs to run
max_images = 2000 # One epoch could be too long for tuning, so we limit the number of images
optimizer = "SGD" # Optimizer to use, choose between "SGD" and "ADAMW"
# training hypeparameters
if optimizer == "SGD":
search_space = {
"tuning_config": {
"optimizer": optimizer,
"lr": tune.loguniform(1e-5, 1e-1), # Learning rate
"momentum": tune.uniform(0.1, 0.9), # Momentum for SGD
#"batch_size": tune.choice([2, 4, 8]),
"max_epoch": max_epoch,
"num_images": max_images,
# "use_amp": tune.choice([True, False]),
# Add other tuning parameters here
},
"config_path": args.config_file,
"task": args.task,
"opts": args.opts,
}
elif optimizer == "ADAMW":
search_space = {
"tuning_config": {
"optimizer": optimizer,
"lr": tune.loguniform(1e-5, 1e-1), # Learning rate
"decay": tune.loguniform(1e-5, 1e-1), # Weight decay for AdamW
# "batch_size": tune.choice([2, 4, 8]),
"max_epoch": max_epoch,
"num_images": max_images,
# "use_amp": tune.choice([True, False]),
# Add other tuning parameters here
},
"config_path": args.config_file,
"task": args.task,
"opts": args.opts,
}
# model hyperparameters
model_config = {
"MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM": tune.choice([512, 1024, 2048, 4096]),
"MODEL.ROI_RELATION_HEAD.MLP_HEAD_DIM": tune.choice([512, 1024, 2048, 4096]),
"MODEL.ROI_RELATION_HEAD.CONTEXT_HIDDEN_DIM": tune.choice([256, 512, 1024, 2048]),
}
squat_config = {
"MODEL.ROI_RELATION_HEAD.SQUAT_MODULE.NUM_DECODER": tune.choice([1,2,3,4,5]),
"MODEL.ROI_RELATION_HEAD.SQUAT_MODULE.RHO": tune.uniform(0.1, 0.9),
"MODEL.ROI_RELATION_HEAD.SQUAT_MODULE.BETA": tune.uniform(0.1, 0.9),
"MODEL.ROI_RELATION_HEAD.SQUAT_MODULE.PRE_NORM": tune.choice([True, False]),
}
pooler_config = {
"MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION": tune.choice([5, 7, 9]),
"MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO": tune.choice([0, 1, 2, 3]),
}
# experimental
#search_space.update({"model_config":model_config})
# config taken from https://docs.ray.io/en/latest/tune/api/schedulers.html
scheduler = ASHAScheduler(
metric="f1_score",
mode="max",
max_t=max_images//cfg.SOLVER.IMS_PER_BATCH,
grace_period=1,
reduction_factor=3,
brackets=1,
)
# TPESampler sampler
algo = OptunaSearch(metric="f1_score", mode="max")
# Configuration for the tuning
tune_config = tune.TuneConfig(
search_alg=algo,
scheduler=scheduler,
num_samples=50, # Adjust for how many trials you want to run, more is better but will take longer
)
# Start the Ray Tune run
trainable_with_cpu_gpu = tune.with_resources(train_relation_net, {"cpu": 6, "gpu": 1})
tuner = tune.Tuner(
trainable_with_cpu_gpu,
tune_config=tune_config,
run_config=train.RunConfig(stop=stopnanloss), # Stop if loss is NaN, useful for AdamW
param_space=search_space,
)
results = tuner.fit()
# save results
output_dir = cfg.OUTPUT_DIR
if output_dir:
save_dir = os.path.join(output_dir, "raytune_results")
os.makedirs(save_dir, exist_ok=True)
save_path = os.path.join(save_dir, "results.pkl")
with open(save_path, "wb") as f:
pickle.dump(results, f)
print(f"Ray Tune results saved to {save_path}")
nan_loss_counter = {}
max_nan_losses = 20 # Maximum number of NaN loss iterations before stopping the trial
def stopnanloss(trial_id, result):
# Check if the loss is NaN
if math.isnan(result["loss"]):
# If the trial is already in the dictionary, increment its count
if trial_id in nan_loss_counter:
nan_loss_counter[trial_id] += 1
else:
# If this is the first NaN loss for the trial, add it to the dictionary
nan_loss_counter[trial_id] = 1
# Check if the trial has exceeded max NaN losses
if nan_loss_counter[trial_id] > max_nan_losses:
# If so, return True to stop the trial
return True
else:
# If the loss is not NaN, reset the counter for this trial
if trial_id in nan_loss_counter:
del nan_loss_counter[trial_id]
return False
if __name__ == "__main__":
main()