@@ -165,7 +165,7 @@ def test_predict_vis_nufft_cached(coords, baselines_1D):
165
165
layer = fourier .NuFFTCached (coords = coords , nchan = nchan , uu = uu , vv = vv )
166
166
167
167
# predict the values of the cube at the u,v locations
168
- blank_packed_img = torch .zeros ((nchan , coords .npix , coords .npix ))
168
+ blank_packed_img = torch .zeros ((nchan , coords .npix , coords .npix ), dtype = torch . double )
169
169
output = layer (blank_packed_img )
170
170
171
171
# make sure we got back the number of visibilities we expected
@@ -287,7 +287,7 @@ def test_nufft_cached_accuracy_single_chan(coords, baselines_1D, tmp_path):
287
287
img_packed = utils .sky_gaussian_arcsec (
288
288
coords .packed_x_centers_2D , coords .packed_y_centers_2D , ** gauss_kw
289
289
)
290
- img_packed_tensor = torch .tensor (img_packed [np .newaxis , :, :], requires_grad = True , dtype = torch .float32 )
290
+ img_packed_tensor = torch .tensor (img_packed [np .newaxis , :, :], requires_grad = True , dtype = torch .double )
291
291
292
292
# use the NuFFT to predict the values of the cube at the u,v locations
293
293
num_output = layer (img_packed_tensor )[0 ] # take the channel dim out
@@ -324,7 +324,7 @@ def test_nufft_cached_accuracy_coil_broadcast(coords, baselines_1D, tmp_path):
324
324
# broadcast to 5 channels -- the image will be the same for each
325
325
img_packed_tensor = torch .tensor (
326
326
img_packed [np .newaxis , :, :] * np .ones ((nchan , coords .npix , coords .npix )),
327
- requires_grad = True , dtype = torch .float32
327
+ requires_grad = True , dtype = torch .double
328
328
)
329
329
330
330
# use the NuFFT to predict the values of the cube at the u,v locations
0 commit comments