-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathpharmagkb.py
936 lines (820 loc) · 34.9 KB
/
pharmagkb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
"""
converter from pharmagkb to atomese
http://pharmgkb.org
"""
__author__ = "Anatoly Belikov"
__email__ = "[email protected]"
import re
import urllib.request
import argparse
import xml.etree.ElementTree as ET
from zipfile import ZipFile
from gzip import GzipFile
from io import BytesIO
import pandas
from atomwrappers import *
import find_gons
chebi_re = re.compile(".*ChEBI:CHEBI:(\d+).*")
pubchem_re = re.compile(".*PubChem Compound:(\d+).*")
pubchem_re_sub = re.compile(".*PubChem Substance:(\d+).*")
drugbank_re = re.compile('.*DrugBank:D?B?(\d+).*')
re_dict = dict()
re_dict['ChEBI'] = [chebi_re]
re_dict['PubChem'] = [pubchem_re, pubchem_re_sub]
re_dict['DrugBank'] = [drugbank_re]
def pharma_to_id(chem_table, name):
"""
extract references to the substance from chem_table
Parameters:
-----------
chem_table: pandas.DataFrame
pharagkb chemicals
name: str
pharmagkb id for the substance
Returns
-------
dict
database name: id pairs
"""
chem = chem_table[chem_table['PharmGKB Accession Id'] == name]
if not len(chem):
print("Not found chemical row for {0}".format(name))
return dict()
assert len(chem) == 1
references = chem['Cross-references'].tolist()
chemical_id = dict()
for r in references:
if isinstance(r, str):
for id_type, reglist in re_dict.items():
for regex in reglist:
match = regex.match(r)
if match:
for num in match.groups():
chemical_id[id_type] = num
# todo: convert PubChem to ChEBI if possible
if not chemical_id:
print("Not found pubchem or chebi id for {0}".format(name))
return chemical_id
def find_mol_type(mol):
if "CHEBI:" in mol.upper():
mol_type = ChebiNode(mol)
elif "PubChem:" in mol or "PubChemSID" in mol:
mol_type = PubchemNode(mol)
elif "Uniprot:" in mol:
mol_type = ProteinNode(mol.split(":")[-1])
else:
mol_type = CMoleculeNode(mol)
return mol_type
def gen_gene_member(gene, pathway_id, organism=None):
result = []
member = CMemberLink(CGeneNode(gene), PharmGkbNode(pathway_id))
result.append(member)
if organism is not None:
org_link = CMemberLink(CGeneNode(gene), CConceptNode("oranism:NCBI{0}".format(organism)))
result.append(org_link)
return result
def process_genes(genes_str, pathway_id, organism=None):
"""
Add member link for comma-separated string of genes
Parameters
----------
genes_str: str
genes
pathway_id: str
pharmagkb id
organism: str
optional parameter, organism genes belong to
default is that genes belong to human sapiens - ncbi 9606
"""
tmp = []
if isinstance(genes_str, str):
for gene in genes_str.split(','):
tmp += gen_gene_member(gene.strip(), pathway_id, organism=organism)
return tmp
uniprot_re = re.compile('.*UniProtKB:([A-Za-z0-9-]+).*')
def gen_proteins(pharma_id, name, pathway_id, pharma2uniprot):
"""
Generate member links for the protein pointed by pharmagkb id
Parameters
----------
pharma_id: List[str]
pharma gkb id for protein
pathway_id: str
pharma gkb id for pathway
genes_data: pandas.DataFrame
table of genes data
Returns
-------
tuple[list, list]
member links connecting protein to pathway
MoleculeNodes for proteins
"""
tmp = []
proteins = []
for prot in pharma_id:
entry = pharma2uniprot[pharma2uniprot.pharma_id == prot + ';']
# drop unreviewed if possible
if 'reviewed' in entry.Status.tolist():
entry = entry[entry.Status == 'reviewed']
if not len(entry):
print("not found uniprot id for {0}".format(name))
continue
for i in range(len(entry)):
prot_id = entry.iloc[i].Entry
molecule = find_mol_type('Uniprot:{0}'.format(prot_id))
member = CMemberLink(molecule,
PharmGkbNode(pathway_id))
tmp.append(member)
proteins.append(molecule)
return tmp, proteins
def gen_location(protein_node, location_node, pathway_id):
return CContextLink(CMemberLink(protein_node,
PharmGkbNode(pathway_id)),
CEvaluationLink(CPredicateNode("has_location"),
CListLink(protein_node,
location_node)))
def generate_locations(elem, ns, chemical_nodes, pathway_id):
result = []
for location_elem in elem.findall('./bp:cellularLocation', ns):
for location in location_elem.attrib.values():
match = go_location_re.match(location)
if match:
go_location = match.group(1)
go_type = find_gons.find_go_type(go_location)
location_node = go_type if go_type else CConceptNode(go_location)
for chemical_node in chemical_nodes:
context = gen_location(chemical_node, location_node, pathway_id)
result.append(context)
else:
assert 'go:' not in location.lower()
return result
def find_chebi(pubchem, drugbank, name, pharma_id, pharma2chebi):
if pharma_id:
frame = pharma2chebi[pharma2chebi.pharma_id == pharma_id]
if len(frame):
assert len(set(frame['ChEBI'].to_list())) == 1
return frame.iloc[0]['ChEBI']
if name:
frame = pharma2chebi[pharma2chebi.Name == name]
if len(frame):
assert len(frame) == 1
return frame.iloc[0]['ChEBI']
def parse_molecule(smallmolecule, ns, chem_data, pharma2chebi=None):
"""
Parse SmallMolecule element
Parameters
----------
smallmolecule: xml.etree.ElementTree.Element
SmallMolecule
ns: dict
namespaces from the owl file
chem_data: pandas.DataFrame
table chemicals from pharagkb
Returns
-------
dict, str
external db name: id pairs
human readable name
"""
reference = smallmolecule.find('bp:entityReference', ns)
molecule_drug = dict()
assert reference is not None
name = smallmolecule.find('./bp:standardName', ns).text.lower().strip()
for value in reference.attrib.values():
pharma_pkg_id = re.match('.*\.(PA\d+)\.?.*', value)
if pharma_pkg_id is None:
# try by standard name
row = chem_data[chem_data.Name == name]
if len(row):
assert len(row) == 1
pharma_pkg_id = row.iloc[0]['PharmGKB Accession Id']
else:
print("no pharmapkg id for {0}".format(value))
continue
else:
pharma_pkg_id = pharma_pkg_id.group(1)
molecule_drug = pharma_to_id(chem_data, pharma_pkg_id)
# try pharma2chebi
if 'ChEBI' not in molecule_drug:
pubchem = molecule_drug.get('PubChem', '')
drugbank = molecule_drug.get('DrugBank', '')
if pharma2chebi is not None:
chebi = find_chebi(pubchem, drugbank, name, pharma_pkg_id, pharma2chebi)
if chebi:
molecule_drug['ChEBI'] = chebi
if pharma_pkg_id is None:
pharma_pkg_id = ''
#name = name.replace('"', '\\"')
#with open('not_parsed.csv', 'at') as f:
# f.write(pharma_pkg_id + '\t')
# f.write(name + '\t')
# f.write(pubchem + '\t')
# f.write(drugbank + '\t')
# f.write('\n')
return molecule_drug, name
def process_small_molecules(pathway, ns, pathway_id, chem_data, id_map, pharma2chebi=None):
tmp = list()
for smallmolecule in pathway.findall('./bp:SmallMolecule', ns):
molecule_drug, name = parse_molecule(smallmolecule, ns, chem_data, pharma2chebi)
molecule = None
for db_name in ('ChEBI', 'PubChem', 'DrugBank'):
if db_name in molecule_drug:
name_node = find_mol_type("{0}:{1}".format(db_name, molecule_drug[db_name]))
ctx = CMemberLink(
CEvaluationLink(
CPredicateNode("has_{0}_id".format(db_name.lower())),
CListLink(find_mol_type(name),
name_node))
,PharmGkbNode(pathway_id))
if molecule is None:
molecule = name_node
tmp.append(ctx)
if molecule is None:
molecule = find_mol_type(name)
member = CMemberLink(molecule,
PharmGkbNode(pathway_id))
tmp.append(member)
id_map[about(smallmolecule, ns)] = [molecule]
tmp += generate_locations(smallmolecule, ns, [molecule], pathway_id)
return tmp
def match_protein_id(value):
match = protein_ref_re.match(value)
if match:
return match.group(2)
else:
assert 'PA' not in value
return None
def parse_protein(protein, pathway, ns, pathway_id, pharma2uniprot, elem_chemical_map, tmp=None):
name = protein.find('./bp:standardName', ns).text
protein_elem_id = about(protein, ns)
if protein_elem_id in elem_chemical_map:
return elem_chemical_map[protein_elem_id]
organism = None
if name.strip().startswith('HIV'):
organism = '12721'
reference_elem = protein.find('./bp:entityReference', ns)
if reference_elem is None:
print("failed to find reference for {0}".format(protein_elem_id))
elem_chemical_map[protein_elem_id] = []
return []
ent_ref_id = resource(reference_elem, ns)
ent_ref = pathway.find('./*[@rdf:about="{0}"]'.format(ent_ref_id), ns)
protein_ref_id = []
if ent_ref.tag.endswith('ProteinReference'):
# it is ether protein group or a protein
xref = ent_ref.find('./bp:xref', ns)
if xref is not None:
value = resource(xref, ns)
prot_id = match_protein_id(value)
if prot_id:
protein_ref_id.append(prot_id)
else:
# protein group
for ent_mem in ent_ref.findall('./bp:memberEntityReference', ns):
value = resource(ent_mem, ns)
prot_id = match_protein_id(value)
if prot_id:
protein_ref_id.append(prot_id)
else:
import pdb;pdb.set_trace()
if protein_ref_id:
members, protein_nodes = gen_proteins(protein_ref_id, name, pathway_id, pharma2uniprot)
elem_chemical_map[protein_elem_id] = protein_nodes
if tmp is not None:
tmp += generate_locations(protein, ns, protein_nodes, pathway_id)
tmp += members
else:
# use the name
name = protein.find('./bp:standardName', ns).text
print("can't map protein to uniprot for {0}".format(name))
elem_chemical_map[protein_elem_id] = [CConceptNode(name)]
if organism is not None:
ev = CEvaluationLink(
CPredicateNode("from_organism"),
CListLink (
CConceptNode(name),
NcbiTaxonomy("taxid:{}".format(str(organism)))))
if tmp is not None:
tmp.append(ev)
return elem_chemical_map.get(protein_elem_id, None)
def process_proteins(pathway, ns, pathway_id, genes_data, pharma2uniprot, elem_chemical_map):
tmp = list()
# properties often don't have valid attributes
for protein in pathway.findall('./bp:Protein', ns):
parse_protein(protein, pathway, ns, pathway_id, pharma2uniprot, elem_chemical_map, tmp=tmp)
# Complex is expected to be made of proteins
for comp in pathway.findall('./bp:Complex', ns):
tmp += parse_elem(comp, pathway, ns, pathway_id, elem_chemical_map)
return tmp
protein_ref_re = re.compile('.*(\.|/)(PA\d+)')
go_location_re = re.compile('.*(GO:\d+).*')
drug_re = re.compile('pgkb.drug.*(PA\d+)')
def wrap_set(molecules):
if len(molecules) == 1:
result = molecules[0]
else:
result = CSetLink(*molecules)
return result
def wrap_list(molecules):
if len(molecules) == 1:
result = molecules[0]
else:
result = CListLink(*molecules)
return result
def gen_interaction(interaction, pathway, pathway_id, ns, id_map, interaction_name):
result = list()
left_elem = interaction.find('./bp:left', ns)
right_elem = interaction.find('./bp:right', ns)
if left_elem is None or right_elem is None:
print("din't find \"from\" participant in interaction {0}".format(about(interaction, ns)))
id_map[about(interaction, ns)] = result
return result
left = resource(left_elem, ns)
right = resource(right_elem, ns)
parse_elem(pathway.find('./*[@rdf:about="{0}"]'.format(left), ns), pathway, ns, pathway_id, id_map)
parse_elem(pathway.find('./*[@rdf:about="{0}"]'.format(right), ns), pathway, ns, pathway_id, id_map)
left_mol = id_map.get(left, ())
right_mol = id_map.get(right, ())
ev = None
if left_mol and right_mol:
ev = CEvaluationLink(
CPredicateNode(interaction_name),
CListLink(wrap_list(left_mol),
wrap_list(right_mol)))
result.append(CMemberLink(
ev,
PharmGkbNode(pathway_id)))
if not result:
print("failed to parse {0}".format(about(interaction, ns)))
id_map[about(interaction, ns)] = [] if ev is None else [ev]
return result
def parse_subelements(interaction, xpath, pathway, pathway_id, ns, id_map):
left_items = list()
for left in interaction.findall(xpath, ns):
left_id = resource(left, ns)
parse_elem(pathway.find('./*[@rdf:about="{0}"]'.format(left_id), ns), pathway, ns, pathway_id, id_map)
left_items += id_map.get(left_id, [])
return left_items
def gen_conversion(interaction, pathway, pathway_id, ns, id_map):
result = list()
left = parse_subelements(interaction, './bp:left', pathway, pathway_id, ns, id_map)
right = parse_subelements(interaction, './bp:right', pathway, pathway_id, ns, id_map)
if left and right:
ev = CEvaluationLink(
CPredicateNode('conversion_of'),
CListLink(wrap_list(left),
wrap_list(right)))
result.append(ev)
id_map[about(interaction, ns)] = [ev]
else:
id_map[about(interaction, ns)] = []
return result
control_name_map = dict()
control_name_map['ACTIVATION'] = 'activation_of'
control_name_map['INHIBITION'] = 'inhibition_of'
control_name_map['leads_to'] = 'leads_to'
def parse_control(control, pathway, ns, pathway_id, id_map):
result = list()
controller_el = control.find('./bp:controller', ns)
if controller_el is None:
print("no controller in {0}".format(about(control, ns)))
id_map[about(control, ns)] = result
return result
controller_id = resource(controller_el, ns)
controller = process_component(pathway.find('./*[@rdf:about="{0}"]'.format(controller_id), ns),
pathway, ns, pathway_id, id_map, [])
# controlled is a some interaction or control
controlled_id = control.find('./bp:controlled[@rdf:resource]', ns).attrib['{{{0}}}resource'.format(ns['rdf'])]
controlled_elem =find_about_element(pathway, ns, controlled_id)
controlled = process_component(controlled_elem,
pathway, ns, pathway_id, id_map, [])
control_type = None
if about(control, ns).startswith('pgkb.leadsTo'):
print("leadsTo control is not implemented")
elif about(control, ns).startswith('pgkb.control.transport'):
# handle the case when controlled is a pathway
if tag(controlled_elem) == 'Pathway':
for cont in controller:
mem = CMemberLink(cont,
controlled[0])
result.append(mem)
id_map[about(control, ns)] = result
return result
else:
print("transport control is not implemented")
id_map[about(control, ns)] = result
return result
else:
control_type_elem = control.find('./bp:controlType', ns)
if control_type_elem is not None:
control_type = control_type_elem.text
else:
print("no control type in {0}".format(about(control, ns)))
tmp = []
if controlled and controller and control_type:
ev = CEvaluationLink(
CPredicateNode(control_name_map[control_type]),
CListLink(
wrap_list(controller),
wrap_list(controlled)))
tmp.append(ev)
ctx = CMemberLink(ev,
PharmGkbNode(pathway_id))
result.append(ctx)
id_map[about(control, ns)] = tmp
return result
def parse_catalysis(element, pathway, ns, pathway_id, id_map):
result = list()
controller_el = element.find('./bp:controller', ns)
if controller_el is None:
print("failed to parse - no controller in Catalysis {0}".format(about(element, ns)))
id_map[about(element, ns)] = []
return result
controller_id = resource(controller_el, ns)
controller = process_component(pathway.find('./*[@rdf:about="{0}"]'.format(controller_id), ns),
pathway, ns, pathway_id, id_map, result=result)
# controled is a some interaction
controlled_id = resource(element.find('./bp:controlled[@rdf:resource]', ns), ns)
controlled_elem = find_about_element(pathway, ns, controlled_id)
controlled = process_component(controlled_elem, pathway, ns, pathway_id, id_map, result=result)
if controlled and controller:
for cont in controller:
res = CEvaluationLink(
CPredicateNode("catalysys_of"),
CListLink(cont,
wrap_list(controlled)))
result.append(
CMemberLink(res,PharmGkbNode(pathway_id)))
id_map[about(element, ns)] = [res]
else:
id_map[about(element, ns)] = []
return result
def find_about_element(pathway, ns, elem_id):
return pathway.find('./*[@rdf:about="{0}"]'.format(elem_id), ns)
def parse_elem(elem, pathway, ns, pathway_id, id_map):
result = list()
if about(elem, ns) in id_map:
return id_map[about(elem, ns)]
if elem.tag.endswith('Complex'):
name = elem.find('./bp:standardName', ns).text
node = find_mol_type(name)
member = CMemberLink(node,
PharmGkbNode(pathway_id))
for comp in elem.findall('./bp:component', ns):
elem_comp = find_about_element(pathway, ns, resource(comp, ns))
for ref in id_map[about(elem_comp, ns)]:
result.append(CMemberLink(ref, node))
id_map[about(elem, ns)] = [node]
result.append(member)
elif elem.tag.endswith('PhysicalEntity'):
print('PhysicalEntity as part of interaction is not supported {0}'.format(elem.find('./bp:standardName', ns).text))
id_map[about(elem, ns)] = []
elif elem.tag.endswith('Pathway'):
name = elem.find('./bp:standardName', ns).text
name = PharmGkbNode(name) if name.startswith("PA") else CConceptNode(name)
result.append(CInheritanceLink(name, CConceptNode('pathway')))
result.append(CMemberLink(name, PharmGkbNode(pathway_id)))
id_map[about(elem, ns)] = [name]
return result
elif elem.tag.endswith('Dna') or elem.tag.endswith('Rna'):
print("Dna and Rna as component of interaction is not supported: {0}".format(about(elem, ns)))
id_map[about(elem, ns)] = []
return result
else:
import pdb;pdb.set_trace()
return result
def about(elem, ns):
ab = '{{{0}}}about'.format(ns['rdf'])
return elem.attrib[ab]
def resource(elem, ns):
res = '{{{0}}}resource'.format(ns['rdf'])
return elem.attrib[res]
def parse_interaction(interaction, pathway, ns, pathway_id, id_map):
result = []
perticipant_el = interaction.findall('./bp:participant', ns)
if not perticipant_el:
print("no participant in interaction: {0}".format(about(interaction, ns)))
id_map[about(interaction, ns)] = []
else:
participant_id = [resource(p, ns) for p in perticipant_el]
for par_id in participant_id:
participant = find_about_element(pathway, ns, par_id)
parse_elem(participant, pathway, ns, pathway_id, id_map)
result += id_map.get(par_id, [])
# it is subiteraction, replace it with it's participant
id_map[about(interaction, ns)] = result
return result
class ParseError(RuntimeError):
pass
def parse_location(element, pathway, ns):
result = []
loc = element.find('bp:cellularLocation', ns)
if loc is None:
raise ParseError("no cellularLocation in elem {0}".format(about(element, ns)))
loc_id = resource(loc, ns)
# may fail
loc_reference = find_about_element(pathway, ns, loc_id)
if loc_reference is None:
return result, CConceptNode(loc_id)
# there is term - human readable and reference
term = loc_reference.find('bp:term', ns).text
xref = resource(loc_reference.find('bp:xref', ns), ns)
match = go_location_re.match(xref)
if match is not None:
xref = go_location_re.match(xref).group(1)
node = find_gons.find_go_type(xref) if "GO:" in xref else CConceptNode(xref)
ev = CEvaluationLink(
CPredicateNode('has_name'),
CListLink(
node,
CConceptNode(term)))
result.append(ev)
return result, CConceptNode(term)
def tag(elem):
return elem.tag.split('#}')[1]
def molecule_transport(transport_protein,
molecule,
source_location,
target_location):
ev = CEvaluationLink(
CPredicateNode('transport_of'),
CListLink(
transport_protein,
molecule,
source_location,
target_location))
return ev
def transport_with_transport_protein(pathway_id, pathway, interaction, left_elem, right_elem, id_map, ns):
tmp = []
result = []
# There exist many variants here
# most common is when a small molecule attached or detached from some protein
# when left is a small molecule then it is attachment, otherwise it is detachment
if tag(left_elem) == 'SmallMolecule' and tag(right_elem) == 'Protein':
transport_protein = right_elem
molecule = left_elem
elif tag(left_elem) == 'Protein' and tag(right_elem) == 'SmallMolecule':
transport_protein = left_elem
molecule = right_elem
else:
# can't handle such cases yet
print('failed to parse transport {0}'.format(interaction))
id_map[about(interaction, ns)] = tmp
return result
loc, source_location = parse_location(left_elem, pathway, ns)
result += loc
loc, target_location = parse_location(right_elem, pathway, ns)
result += loc
if not (len(id_map[about(transport_protein, ns)]) == 1 and len(id_map[about(molecule, ns)]) == 1):
# todo
print("multiple elements for one transport molecule")
ev = molecule_transport(id_map[about(transport_protein, ns)][0],
id_map[about(molecule, ns)][0],
source_location,
target_location)
tmp.append(ev)
id_map[about(interaction, ns)] = tmp
member = CMemberLink(ev,
PharmGkbNode(pathway_id))
result += [member]
return result
def parse_transport(interaction, pathway, ns, pathway_id, id_map):
result = []
# left = from
# right = to
# todo: handle cases when there are many left or right elements
left = interaction.find('./bp:left', ns)
right = interaction.find('./bp:right', ns)
error = None
if right is None:
error = 'no destination for transport in {0}'.format(about(interaction, ns))
if left is None:
error = 'no source for transport in {0}'.format(about(interaction, ns))
if error is not None:
print(error)
id_map[about(interaction, ns)] = []
return result
try:
left_id = resource(left, ns)
right_id = resource(right, ns)
left_elem = find_about_element(pathway, ns, left_id)
right_elem = find_about_element(pathway, ns, right_id)
# check that it is the same chemical
left_ref = left_elem.find('bp:entityReference', ns)
right_ref = right_elem.find('bp:entityReference', ns)
tmp = []
if None not in (left_ref, right_ref):
left_ref = resource(left_ref, ns)
right_ref = resource(right_ref, ns)
else:
# failed to check with reference, use standardName
left_ref = left_elem.find('bp:standardName', ns).text
right_ref = right_elem.find('bp:standardName', ns).text
if left_ref != right_ref:
return transport_with_transport_protein(pathway_id, pathway, interaction, left_elem, right_elem, id_map, ns)
parse_elem(left_elem, pathway, ns, pathway_id, id_map)
left_r, left_xref = parse_location(left_elem, pathway, ns)
result += left_r
right_r, right_xref = parse_location(right_elem, pathway, ns)
result += right_r
for mol in id_map.get(left_id, ()):
ev = CEvaluationLink(
CPredicateNode('transport_of'),
CListLink(mol,
left_xref,
right_xref))
member = CMemberLink(ev,
PharmGkbNode(pathway_id))
result += [member]
tmp.append(ev)
except ParseError as e:
print("Error parsing transport {0}".format(e))
# need to extract locations
id_map[about(interaction, ns)] = tmp
return result
def process_component(interaction, pathway, ns, pathway_id, id_map, result):
interaction_name = interaction.tag.split('}')[-1]
if about(interaction, ns) in id_map:
return id_map[about(interaction, ns)]
if interaction_name == 'BiochemicalReaction':
result += gen_interaction(interaction, pathway, pathway_id, ns, id_map, 'reaction')
elif interaction_name == 'Transport':
result += parse_transport(interaction, pathway, ns, pathway_id, id_map)
elif interaction_name == 'Catalysis':
result += parse_catalysis(interaction, pathway, ns, pathway_id, id_map)
elif interaction_name == 'Interaction':
result += parse_interaction(interaction, pathway, ns, pathway_id, id_map)
elif interaction_name == 'Control':
result += parse_control(interaction, pathway, ns, pathway_id, id_map)
elif interaction_name == 'Conversion':
result += gen_conversion(interaction, pathway, pathway_id, ns, id_map)
elif interaction_name == 'Pathway':
result += parse_elem(interaction, pathway, ns, pathway_id, id_map)
elif interaction_name == 'ComplexAssembly':
print("ComplexAssembly parsing is not yet implemented")
id_map[about(interaction, ns)] = []
elif interaction_name == 'Complex':
result += parse_elem(interaction, pathway, ns, pathway_id, id_map)
elif interaction_name == 'Degradation':
print("Degradation parsing is not yet implemented")
id_map[about(interaction, ns)] = []
elif interaction_name == 'TemplateReactionRegulation':
print("TemplateReactionRegulation parsing is not yet implemented")
id_map[about(interaction, ns)] = []
else:
import pdb;pdb.set_trace()
return id_map[about(interaction, ns)]
def process_components(pathway, ns, pathway_id, id_map):
result = list()
for component in pathway.findall('bp:Pathway/bp:pathwayComponent', ns):
for comp in component.attrib.values():
interaction = pathway.find('./*[@rdf:about="{0}"]'.format(comp), ns)
process_component(interaction, pathway, ns, pathway_id, id_map, result=result)
return result
def convert_pathway(pathway, chem_data, genes_data, pharma2uniprot, pathway_id, pathway_name, ns, pharma2chebi):
print("processing pathway {0} {1}".format(pathway_id, pathway_name))
ev_name = CEvaluationLink(
CPredicateNode("has_name"),
CListLink(PharmGkbNode(pathway_id),
CConceptNode(pathway_name)))
tmp = [ev_name]
tmp.append(CInheritanceLink(
PharmGkbNode(pathway_id),
CConceptNode('pathway')))
id_map = dict()
tmp += process_proteins(pathway, ns, pathway_id, genes_data, pharma2uniprot, id_map)
tmp += process_small_molecules(pathway, ns, pathway_id, chem_data, id_map, pharma2chebi)
tmp += process_components(pathway, ns, pathway_id, id_map)
return '\n'.join([x.recursive_print() for x in tmp])
# https://effbot.org/zone/element-namespaces.htm
def parse_map(source_file):
"""
Extract namespaces from xml file
"""
events = "start", "start-ns", "end-ns"
root = None
ns_map = []
result = dict()
for event, elem in ET.iterparse(source_file, events):
if event == "start-ns":
ns_map.append(elem)
elif event == "end-ns":
ns_map.pop()
elif event == "start":
if root is None:
root = elem
result.update(dict(ns_map))
return result
PATHWAY_RE = re.compile('(PA\d+)-(\w+).owl')
def get_pathway_id_name(root, ns):
name = root.findall('./bp:Pathway/bp:displayName', ns)[0].text
tmp = root.findall('./bp:Pathway[@rdf:about]', ns)
res = []
for x in tmp:
if x.findall('./bp:pathwayComponent', ns):
name = x.find('./bp:displayName', ns).text
res.append(x)
continue
assert len(res) == 1
res = res[0].find('./bp:xref[@rdf:resource]', ns)
pathway_id = None
if res is not None:
for k,v in res.attrib.items():
if k.endswith('resource'):
pathway_id = v.split('/')[-1].split('.')[-1]
return pathway_id, name
def build_request(url):
headers = dict()
# seems to work with wget headers
headers['User-Agent'] = "Wget/1.19.5 (linux-gnu)"
headers['Accept'] = '*/*'
headers['Accept-Encoding'] = 'identity'
headers['Connection'] = 'Keep-Alive'
req = urllib.request.Request(url, headers={'User-Agent': 'Mozilla/5.0'})
response = urllib.request.urlopen(req)
return response
pharma2uniprot_url = 'https://github.com/noskill/knowledge-import/raw/master/uniprot2pharmagkb.tab.gz'
pharma2chebi_url = 'https://github.com/noskill/knowledge-import/raw/master/pharma2chebi.tsv'
def download():
pathway = 'https://s3.pgkb.org/data/pathways-biopax.zip'
genes = 'https://s3.pgkb.org/data/genes.zip'
chemicals = 'https://s3.pgkb.org/data/chemicals.zip'
pathway_zip = ZipFile(BytesIO(build_request(pathway).read()))
genes_zip = ZipFile(BytesIO(build_request(genes).read()))
chem_zip = ZipFile(BytesIO(build_request(chemicals).read()))
pharma2uniprot = GzipFile(fileobj=BytesIO(build_request(pharma2uniprot_url).read()))
pharma2chebi = BytesIO(build_request(pharma2chebi_url).read())
return pathway_zip, genes_zip, chem_zip, pharma2uniprot, pharma2chebi
def parse_args():
parser = argparse.ArgumentParser(description='convert biogrid db to atomese')
parser.add_argument('--pathways', type=str, default='',
help='zip archive with pathways in owl format')
parser.add_argument('--chemicals', type=str, default='',
help='zip archive with chemicals in tsv format')
parser.add_argument('--genes', type=str, default='',
help='zip archive with genes data in tsv format')
parser.add_argument('--output', type=str, default='/tmp/pharmagkb.scm',
help='path to output file')
parser.add_argument('--pharma2uniprot', type=str, default='',
help='path to pharma2uniprot file')
parser.add_argument('--pharma2chebi', type=str, default='',
help='pharma2chebi mapping file')
return parser.parse_args()
def remove_duplicates(pharma2uniprot):
loc_entry = ([(i,pharma2uniprot.iloc[i]) for (i,x) in enumerate(pharma2uniprot['Cross-reference (PharmGKB)'].tolist()) if x.count('PA') > 1])
table = pharma2uniprot.iloc[0:0]
prev_iloc = 0
for (iloc, entry) in loc_entry:
table = table.append(pharma2uniprot.iloc[prev_iloc: iloc])
for pharma_gkb_id in entry['Cross-reference (PharmGKB)'].split(';'):
if pharma_gkb_id:
new_entry = entry.copy()
new_entry['Cross-reference (PharmGKB)'] = pharma_gkb_id + ';'
table = table.append(new_entry)
prev_iloc = iloc + 1
table = table.append(pharma2uniprot.iloc[prev_iloc:])
table = table.rename(columns={'Cross-reference (PharmGKB)': 'pharma_id'})
return table
def main():
args = parse_args()
if (args.pathways and args.genes and args):
pathway_file = ZipFile(BytesIO(open(args.pathways, 'rb').read()))
chemicals_file = ZipFile(BytesIO(open(args.chemicals, 'rb').read()))
genes_file = ZipFile(BytesIO(open(args.genes, 'rb').read()))
# file is small, handle it separately
if args.pharma2uniprot:
pharma2uniprot_file = GzipFile(args.pharma2uniprot)
else:
pharma2uniprot_file = GzipFile(fileobj=BytesIO(urllib.request.urlopen(pharma2uniprot_url).read()))
# file is small, handle it separately
if args.pharma2chebi:
pharma2chebi_file = open(args.pharma2chebi)
else:
pharma2chebi_file = BytesIO(urllib.request.urlopen(pharma2chebi_url).read())
else:
pathway_file, genes_file, chemicals_file, pharma2uniprot_file, pharma2chebi_file = download()
# ensure that chibi id are strings
pharma2chebi = pandas.read_csv(pharma2chebi_file, converters={i: str for i in range(0, 30000)}, sep='\t')
chem_tsv = chemicals_file.open('chemicals.tsv')
genes_tsv = genes_file.open('genes.tsv')
genes_data = pandas.read_csv(genes_tsv, sep="\t")
chem_data = pandas.read_csv(chem_tsv, sep="\t")
pharma2uniprot = remove_duplicates(pandas.read_csv(pharma2uniprot_file, sep='\t'))
pathway_files = [x for x in pathway_file.namelist() if x.endswith('.owl')]
out_path = args.output
output = open(out_path, 'wt')
for filename in pathway_files:
extracted_file = pathway_file.open(filename).read()
tree = ET.fromstring(extracted_file)
ns = parse_map(pathway_file.open(filename))
pathway_id, pathway_name = get_pathway_id_name(tree, ns)
if pathway_id is None:
pathway_id = filename.split('-')[0]
res = convert_pathway(tree, chem_data, genes_data,
pharma2uniprot, pathway_id, pathway_name, ns,
pharma2chebi)
output.write(res)
output.write('\n' * 3)
output.close()
if __name__ == '__main__':
main()