-
Notifications
You must be signed in to change notification settings - Fork 8
/
proposed_cifar100_LE.py
234 lines (193 loc) · 7.19 KB
/
proposed_cifar100_LE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
'''Train CIFAR10 with PyTorch.'''
from __future__ import print_function
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from PIL import Image
import torchvision
import torchvision.transforms as transforms
import numpy as np
import os
import argparse
from proposed_adaptation_network import ShakePyramidNet
import tensorboardX as tbx
import re
from sklearn import preprocessing
from scheduler import CyclicLR
from torch.utils.data.dataset import Dataset
from torch.utils.data.dataloader import DataLoader
import random
from util_norm import total_variation_norm
import math
from torch.optim import lr_scheduler
from Blockwise_scramble_LE import blockwise_scramble
# For Help
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint')
parser.add_argument('--gamma', default=0.1, type=float)
parser.add_argument('--milestones', default='150,225', type=str)
# For Networks
parser.add_argument("--depth", type=int, default=26)
parser.add_argument("--w_base", type=int, default=64)
parser.add_argument("--cardinary", type=int, default=4)
# For Training
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument("--weight_decay", type=float, default=5e-4)
parser.add_argument("--nesterov", type=bool, default=True)
parser.add_argument('--e', '-e', default=150, type=int, help='learning rate')
parser.add_argument("--batch_size", type=int, default=128)
# file name
parser.add_argument("--tensorboard_name", type=str, default="proposed_adaptation_network_cifar100", help="tensorboard_name")
parser.add_argument("--training_model_name", type=str, default="proposed_adaptation_network_cifar100.t7", help="tensorboard_name")
parser.add_argument("--json_file_name", type=str, default="proposed_adaptation_network_cifar100.json", help="json_file")
args = parser.parse_args()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
temp = 1
temp_min = 0.001
ANNEAL_RATE = 0.003
# Data
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
])
# from cifar10 import CIFAR10
trainset = torchvision.datasets.CIFAR100(root='./data_cifar100', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=512, shuffle=True, num_workers=16)
testset = torchvision.datasets.CIFAR100(root='./data_cifar100', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=512, shuffle=False, num_workers=16)
random.seed(30)
_shf = []
for i in range(64):
_shf.append(i)
random.shuffle(_shf)
# Model
print('==> Building model..')
net = ShakePyramidNet(depth=110, alpha=270, label=100)
net = net.to(device)
if device == 'cuda':
print("true")
net = torch.nn.DataParallel(net).cuda()
cudnn.benchmark = True
if args.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'
checkpoint = torch.load('./'+args.training_model_name)
net.load_state_dict(checkpoint['net'])
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch']
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(),
lr=args.lr,
momentum=0.9,
weight_decay=args.weight_decay,
nesterov=args.nesterov)
l2_crit = nn.L1Loss()
mse = nn.MSELoss()
# Training
def train(epoch):
net.train()
train_loss = 0
correct = 0
total = 0
p = None
param12 = 0.001
param3 = 0.001
param4 = 1e-1
for batch_idx, (inputs, targets) in enumerate(trainloader):
x_stack = None
imgs = inputs.numpy().astype('float32')
# block scrambling
x_stack = blockwise_scramble(imgs)
imgs = np.transpose(x_stack,(0,3,1,2))
inputs = torch.from_numpy(imgs)
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs, mat, feature = net(inputs)
true_loss = criterion(outputs, targets)
# doubly stochastic constraint
dsc = 0
for i in range(64):
dsc += torch.abs(mat[i,:]).sum()-torch.sqrt((mat[i,:]*mat[i,:]).sum())
dsc += torch.abs(mat[:,i]).sum()-torch.sqrt((mat[:,i]*mat[:,i]).sum())
dsc = param3 * dsc / (64*64)
natural_image_prior = param4 * total_variation_norm(feature) / inputs.size()[0]
loss = true_loss + dsc + natural_image_prior
loss.backward()
optimizer.step()
train_loss += true_loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
return train_loss, 100.*correct/total
def test(epoch):
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
x_stack = None
imgs = inputs.numpy().astype('float32')
# block scrambling
x_stack = blockwise_scramble(imgs)
imgs = np.transpose(x_stack,(0,3,1,2))
inputs = torch.from_numpy(imgs)
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs, mat, feature = net(inputs)
true_loss = criterion(outputs, targets)
test_loss += true_loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
# Save checkpoint.
acc = 100.*correct/total
if best_acc < acc:
# print('Saving..')
state = {
'net': net.state_dict(),
'acc': acc,
'epoch': epoch,
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state,'./'+args.training_model_name)
best_acc = acc
return test_loss, 100.*correct/total
writer = tbx.SummaryWriter(args.tensorboard_name)
scheduler = lr_scheduler.MultiStepLR(optimizer,
milestones=[int(e) for e in args.milestones.split(',')])
for epoch in range(start_epoch, start_epoch+args.e):
scheduler.step()
train_loss, train_acc = train(epoch+1)
test_loss, test_acc = test(epoch+1)
writer.add_scalars('data/loss',
{
'train_loss': train_loss / ((50000/512)+1),
'test_loss': test_loss / ((10000/512)+1),
},
(epoch + 1)
)
writer.add_scalars('data/acc',
{
'train_acc': train_acc,
'test_acc': test_acc
},
(epoch + 1)
)
print(str(train_loss / ((50000/512)+1)) +","+str(train_acc)+","+str(test_loss / ((10000/512)+1))+","+str(test_acc)+","+str(scheduler.get_lr()[0]))
print("best acc : ",best_acc)
writer.export_scalars_to_json("./"+args.json_file_name)
writer.close()