Paper link: https://arxiv.org/abs/1706.02263 Author's code: https://github.com/riannevdberg/gc-mc
The implementation does not handle side-channel features and mini-epoching and thus achieves slightly worse performance when using node features.
Credit: Jiani Zhang (@jennyzhang0215)
- PyTorch 1.2+
- pandas
- torchtext 0.4+ (if using user and item contents as node features)
- spacy (if using user and item contents as node features)
- You will also need to run
python -m spacy download en_core_web_sm
- You will also need to run
Supported datasets: ml-100k, ml-1m, ml-10m
ml-100k, no feature
python3 train.py --data_name=ml-100k --use_one_hot_fea --gcn_agg_accum=stack
Results: RMSE=0.9088 (0.910 reported)
ml-100k, with feature
python3 train.py --data_name=ml-100k --gcn_agg_accum=stack
Results: RMSE=0.9448 (0.905 reported)
ml-1m, no feature
python3 train.py --data_name=ml-1m --gcn_agg_accum=sum --use_one_hot_fea
Results: RMSE=0.8377 (0.832 reported)
ml-10m, no feature
python3 train.py --data_name=ml-10m --gcn_agg_accum=stack --gcn_dropout=0.3 \
--train_lr=0.001 --train_min_lr=0.0001 --train_max_iter=15000 \
--use_one_hot_fea --gen_r_num_basis_func=4
Results: RMSE=0.7800 (0.777 reported) Testbed: EC2 p3.2xlarge instance(Amazon Linux 2)
ml-100k, no feature
python3 train_sampling.py --data_name=ml-100k \
--use_one_hot_fea \
--gcn_agg_accum=stack \
--gpu 0
ml-100k, no feature with mix_cpu_gpu run, for mix_cpu_gpu run with no feature, the W_r is stored in CPU by default other than in GPU.
python3 train_sampling.py --data_name=ml-100k \
--use_one_hot_fea \
--gcn_agg_accum=stack \
--mix_cpu_gpu \
--gpu 0
Results: RMSE=0.9380
ml-100k, with feature
python3 train_sampling.py --data_name=ml-100k \
--gcn_agg_accum=stack \
--train_max_epoch 90 \
--gpu 0
Results: RMSE=0.9574
ml-1m, no feature
python3 train_sampling.py --data_name=ml-1m \
--gcn_agg_accum=sum \
--use_one_hot_fea \
--train_max_epoch 160 \
--gpu 0
ml-1m, no feature with mix_cpu_gpu run
python3 train_sampling.py --data_name=ml-1m \
--gcn_agg_accum=sum \
--use_one_hot_fea \
--train_max_epoch 60 \
--mix_cpu_gpu \
--gpu 0
Results: RMSE=0.8632
ml-10m, no feature
python3 train_sampling.py --data_name=ml-10m \
--gcn_agg_accum=stack \
--gcn_dropout=0.3 \
--train_lr=0.001 \
--train_min_lr=0.0001 \
--train_max_epoch=60 \
--use_one_hot_fea \
--gen_r_num_basis_func=4 \
--gpu 0
ml-10m, no feature with mix_cpu_gpu run
python3 train_sampling.py --data_name=ml-10m \
--gcn_agg_accum=stack \
--gcn_dropout=0.3 \
--train_lr=0.001 \
--train_min_lr=0.0001 \
--train_max_epoch=60 \
--use_one_hot_fea \
--gen_r_num_basis_func=4 \
--mix_cpu_gpu \
--gpu 0
Results: RMSE=0.8050 Testbed: EC2 p3.2xlarge instance
ml-100k, no feature
python train_sampling.py --data_name=ml-100k \
--gcn_agg_accum=stack \
--train_max_epoch 30 \
--train_lr 0.02 \
--use_one_hot_fea \
--gpu 0,1,2,3,4,5,6,7
ml-100k, no feature with mix_cpu_gpu run
python train_sampling.py --data_name=ml-100k \
--gcn_agg_accum=stack \
--train_max_epoch 30 \
--train_lr 0.02 \
--use_one_hot_fea \
--mix_cpu_gpu \
--gpu 0,1,2,3,4,5,6,7
Result: RMSE=0.9397
ml-100k, with feature
python train_sampling.py --data_name=ml-100k \
--gcn_agg_accum=stack \
--train_max_epoch 30 \
--gpu 0,1,2,3,4,5,6,7
Result: RMSE=0.9655
ml-1m, no feature
python train_sampling.py --data_name=ml-1m \
--gcn_agg_accum=sum \
--train_max_epoch 40 \
--use_one_hot_fea \
--gpu 0,1,2,3,4,5,6,7
ml-1m, no feature with mix_cpu_gpu run
python train_sampling.py --data_name=ml-1m \
--gcn_agg_accum=sum \
--train_max_epoch 40 \
--use_one_hot_fea \
--mix_cpu_gpu \
--gpu 0,1,2,3,4,5,6,7
Results: RMSE=0.8621
ml-10m, no feature
python train_sampling.py --data_name=ml-10m \
--gcn_agg_accum=stack \
--gcn_dropout=0.3 \
--train_lr=0.001 \
--train_min_lr=0.0001 \
--train_max_epoch=30 \
--use_one_hot_fea \
--gen_r_num_basis_func=4 \
--gpu 0,1,2,3,4,5,6,7
ml-10m, no feature with mix_cpu_gpu run
python train_sampling.py --data_name=ml-10m \
--gcn_agg_accum=stack \
--gcn_dropout=0.3 \
--train_lr=0.001 \
--train_min_lr=0.0001 \
--train_max_epoch=30 \
--use_one_hot_fea \
--gen_r_num_basis_func=4 \
--mix_cpu_gpu \
--gpu 0,1,2,3,4,5,6,7
Results: RMSE=0.8084 Testbed: EC2 p3.16xlarge instance
ml-100k, no feature
python3 train_sampling.py --data_name=ml-100k \
--use_one_hot_fea \
--gcn_agg_accum=stack \
--gpu -1
Testbed: EC2 r5.xlarge instance