Skip to content

Latest commit

 

History

History
 
 

gcmc

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 

Graph Convolutional Matrix Completion

Paper link: https://arxiv.org/abs/1706.02263 Author's code: https://github.com/riannevdberg/gc-mc

The implementation does not handle side-channel features and mini-epoching and thus achieves slightly worse performance when using node features.

Credit: Jiani Zhang (@jennyzhang0215)

Dependencies

  • PyTorch 1.2+
  • pandas
  • torchtext 0.4+ (if using user and item contents as node features)
  • spacy (if using user and item contents as node features)
    • You will also need to run python -m spacy download en_core_web_sm

Data

Supported datasets: ml-100k, ml-1m, ml-10m

How to run

Train with full-graph

ml-100k, no feature

python3 train.py --data_name=ml-100k --use_one_hot_fea --gcn_agg_accum=stack

Results: RMSE=0.9088 (0.910 reported)

ml-100k, with feature

python3 train.py --data_name=ml-100k --gcn_agg_accum=stack

Results: RMSE=0.9448 (0.905 reported)

ml-1m, no feature

python3 train.py --data_name=ml-1m --gcn_agg_accum=sum --use_one_hot_fea

Results: RMSE=0.8377 (0.832 reported)

ml-10m, no feature

python3 train.py --data_name=ml-10m --gcn_agg_accum=stack --gcn_dropout=0.3 \
                                 --train_lr=0.001 --train_min_lr=0.0001 --train_max_iter=15000 \
                                 --use_one_hot_fea --gen_r_num_basis_func=4

Results: RMSE=0.7800 (0.777 reported) Testbed: EC2 p3.2xlarge instance(Amazon Linux 2)

Train with minibatch on a single GPU

ml-100k, no feature

python3 train_sampling.py --data_name=ml-100k \
                          --use_one_hot_fea \
                          --gcn_agg_accum=stack \
                          --gpu 0

ml-100k, no feature with mix_cpu_gpu run, for mix_cpu_gpu run with no feature, the W_r is stored in CPU by default other than in GPU.

python3 train_sampling.py --data_name=ml-100k \
                          --use_one_hot_fea \
                          --gcn_agg_accum=stack \
                          --mix_cpu_gpu \
                          --gpu 0 

Results: RMSE=0.9380

ml-100k, with feature

python3 train_sampling.py --data_name=ml-100k \
                          --gcn_agg_accum=stack \
                          --train_max_epoch 90 \
                          --gpu 0

Results: RMSE=0.9574

ml-1m, no feature

python3 train_sampling.py --data_name=ml-1m \
                          --gcn_agg_accum=sum \
                          --use_one_hot_fea \
                          --train_max_epoch 160 \
                          --gpu 0

ml-1m, no feature with mix_cpu_gpu run

python3 train_sampling.py --data_name=ml-1m \
                          --gcn_agg_accum=sum \
                          --use_one_hot_fea \
                          --train_max_epoch 60 \
                          --mix_cpu_gpu \
                          --gpu 0

Results: RMSE=0.8632

ml-10m, no feature

python3 train_sampling.py --data_name=ml-10m \
                          --gcn_agg_accum=stack \
                          --gcn_dropout=0.3 \
                          --train_lr=0.001 \
                          --train_min_lr=0.0001 \
                          --train_max_epoch=60 \
                          --use_one_hot_fea \
                          --gen_r_num_basis_func=4 \
                          --gpu 0

ml-10m, no feature with mix_cpu_gpu run

python3 train_sampling.py --data_name=ml-10m \
                          --gcn_agg_accum=stack \
                          --gcn_dropout=0.3 \
                          --train_lr=0.001 \
                          --train_min_lr=0.0001 \
                          --train_max_epoch=60 \
                          --use_one_hot_fea \
                          --gen_r_num_basis_func=4 \
                          --mix_cpu_gpu \
                          --gpu 0

Results: RMSE=0.8050 Testbed: EC2 p3.2xlarge instance

Train with minibatch on multi-GPU

ml-100k, no feature

python train_sampling.py --data_name=ml-100k \
                         --gcn_agg_accum=stack \
                         --train_max_epoch 30 \
                         --train_lr 0.02 \
                         --use_one_hot_fea \
                         --gpu 0,1,2,3,4,5,6,7

ml-100k, no feature with mix_cpu_gpu run

python train_sampling.py --data_name=ml-100k \
                         --gcn_agg_accum=stack \
                         --train_max_epoch 30 \
                         --train_lr 0.02 \
                         --use_one_hot_fea \
                         --mix_cpu_gpu \
                         --gpu 0,1,2,3,4,5,6,7

Result: RMSE=0.9397

ml-100k, with feature

python train_sampling.py --data_name=ml-100k \
                         --gcn_agg_accum=stack \
                         --train_max_epoch 30 \
                         --gpu 0,1,2,3,4,5,6,7

Result: RMSE=0.9655

ml-1m, no feature

python train_sampling.py --data_name=ml-1m \
                         --gcn_agg_accum=sum \
                         --train_max_epoch 40 \
                         --use_one_hot_fea \
                         --gpu 0,1,2,3,4,5,6,7

ml-1m, no feature with mix_cpu_gpu run

python train_sampling.py --data_name=ml-1m \
                         --gcn_agg_accum=sum \
                         --train_max_epoch 40 \
                         --use_one_hot_fea \
                         --mix_cpu_gpu \
                         --gpu 0,1,2,3,4,5,6,7

Results: RMSE=0.8621

ml-10m, no feature

python train_sampling.py --data_name=ml-10m \
                         --gcn_agg_accum=stack \
                         --gcn_dropout=0.3 \
                         --train_lr=0.001 \
                         --train_min_lr=0.0001 \
                         --train_max_epoch=30 \
                         --use_one_hot_fea \
                         --gen_r_num_basis_func=4 \
                         --gpu 0,1,2,3,4,5,6,7

ml-10m, no feature with mix_cpu_gpu run

python train_sampling.py --data_name=ml-10m \
                         --gcn_agg_accum=stack \
                         --gcn_dropout=0.3 \
                         --train_lr=0.001 \
                         --train_min_lr=0.0001 \
                         --train_max_epoch=30 \
                         --use_one_hot_fea \
                         --gen_r_num_basis_func=4 \
                         --mix_cpu_gpu \
                         --gpu 0,1,2,3,4,5,6,7

Results: RMSE=0.8084 Testbed: EC2 p3.16xlarge instance

Train with minibatch on CPU

ml-100k, no feature

python3 train_sampling.py --data_name=ml-100k \
                          --use_one_hot_fea \
                          --gcn_agg_accum=stack \
                          --gpu -1

Testbed: EC2 r5.xlarge instance