Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

OSError: libc10_hip.so: cannot open shared object file: No such file or directory #1

Open
PavanKumarMiriyala opened this issue Feb 7, 2023 · 6 comments

Comments

@PavanKumarMiriyala
Copy link

Hi,

I'm facing an error with torch-scatter while running an example pytorch geometric code.

I'm using

  1. Ubuntu 22.04.1 LTS
  2. Python 3.10.6
  3. torch 1.13.1
  4. ROCM 5.4.2

Installation is successful, but cannot an example code.

Traceback (most recent call last): File "/home/vmiriyal/pytorch_geometric/examples/gcn.py", line 7, in <module> import torch_geometric.transforms as T File "/usr/local/lib/python3.10/dist-packages/torch_geometric/__init__.py", line 1, in <module> import torch_geometric.utils File "/usr/local/lib/python3.10/dist-packages/torch_geometric/utils/__init__.py", line 1, in <module> from .scatter import scatter File "/usr/local/lib/python3.10/dist-packages/torch_geometric/utils/scatter.py", line 5, in <module> import torch_scatter File "/usr/local/lib/python3.10/dist-packages/torch_scatter/__init__.py", line 16, in <module> torch.ops.load_library(spec.origin) File "/usr/local/lib/python3.10/dist-packages/torch/_ops.py", line 573, in load_library ctypes.CDLL(path) File "/usr/lib/python3.10/ctypes/__init__.py", line 374, in __init__ self._handle = _dlopen(self._name, mode) OSError: libc10_hip.so: cannot open shared object file: No such file or directory

@PavanKumarMiriyala
Copy link
Author

Hi,

Any update on this?

@Looong01
Copy link
Owner

Looong01 commented Feb 20, 2023

Sorry for so much time. GitHub does not send the notification email to me.
It seems that your rocm or hip installation is not complete.
Which command did you do before it returned this problem?

@Looong01
Copy link
Owner

I use python gcn.py, and it run successfully.

(PyTorch) loong@home:~/Downloads/pytorch_geometric/examples$ python gcn.py
Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.x
Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.tx
Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.allx
Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.y
Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.ty
Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.ally
Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.graph
Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.test.index
Processing...
Done!
Epoch: 001, Loss: 1.9458, Train: 0.2857, Val: 0.1800, Test: 0.2030
Epoch: 002, Loss: 1.9417, Train: 0.4500, Val: 0.2980, Test: 0.3250
Epoch: 003, Loss: 1.9336, Train: 0.6071, Val: 0.3720, Test: 0.4130
Epoch: 004, Loss: 1.9258, Train: 0.6786, Val: 0.4160, Test: 0.4270
Epoch: 005, Loss: 1.9186, Train: 0.6857, Val: 0.4100, Test: 0.4270
Epoch: 006, Loss: 1.9118, Train: 0.7571, Val: 0.4760, Test: 0.4520
Epoch: 007, Loss: 1.9018, Train: 0.7643, Val: 0.5120, Test: 0.4800
Epoch: 008, Loss: 1.8946, Train: 0.8143, Val: 0.5320, Test: 0.5040
Epoch: 009, Loss: 1.8804, Train: 0.8429, Val: 0.5700, Test: 0.5440
Epoch: 010, Loss: 1.8706, Train: 0.8857, Val: 0.6160, Test: 0.5920
Epoch: 011, Loss: 1.8675, Train: 0.9000, Val: 0.6380, Test: 0.6380
Epoch: 012, Loss: 1.8523, Train: 0.9000, Val: 0.6580, Test: 0.6630
Epoch: 013, Loss: 1.8399, Train: 0.8929, Val: 0.6780, Test: 0.6650
Epoch: 014, Loss: 1.8315, Train: 0.9000, Val: 0.6800, Test: 0.6660
Epoch: 015, Loss: 1.8144, Train: 0.9071, Val: 0.6860, Test: 0.6680
Epoch: 016, Loss: 1.7984, Train: 0.9000, Val: 0.6820, Test: 0.6680
Epoch: 017, Loss: 1.7953, Train: 0.9000, Val: 0.6800, Test: 0.6680
Epoch: 018, Loss: 1.7846, Train: 0.9143, Val: 0.6820, Test: 0.6680
Epoch: 019, Loss: 1.7723, Train: 0.9071, Val: 0.6820, Test: 0.6680
Epoch: 020, Loss: 1.7635, Train: 0.9286, Val: 0.6840, Test: 0.6680
Epoch: 021, Loss: 1.7437, Train: 0.9143, Val: 0.6880, Test: 0.7000
Epoch: 022, Loss: 1.7242, Train: 0.9214, Val: 0.6860, Test: 0.7000
Epoch: 023, Loss: 1.7266, Train: 0.9214, Val: 0.6820, Test: 0.7000
Epoch: 024, Loss: 1.6978, Train: 0.9143, Val: 0.6840, Test: 0.7000
Epoch: 025, Loss: 1.6749, Train: 0.9071, Val: 0.6900, Test: 0.6950
Epoch: 026, Loss: 1.6739, Train: 0.9071, Val: 0.7000, Test: 0.6960
Epoch: 027, Loss: 1.6584, Train: 0.9143, Val: 0.7020, Test: 0.6960
Epoch: 028, Loss: 1.6251, Train: 0.9071, Val: 0.6940, Test: 0.6960
Epoch: 029, Loss: 1.6272, Train: 0.9071, Val: 0.6980, Test: 0.6960
Epoch: 030, Loss: 1.6126, Train: 0.9071, Val: 0.7060, Test: 0.7040
Epoch: 031, Loss: 1.5836, Train: 0.9143, Val: 0.7120, Test: 0.7040
Epoch: 032, Loss: 1.5298, Train: 0.9143, Val: 0.7100, Test: 0.7040
Epoch: 033, Loss: 1.5698, Train: 0.9214, Val: 0.7120, Test: 0.7040
Epoch: 034, Loss: 1.5488, Train: 0.9286, Val: 0.7120, Test: 0.7040
Epoch: 035, Loss: 1.5310, Train: 0.9286, Val: 0.7100, Test: 0.7040
Epoch: 036, Loss: 1.5238, Train: 0.9357, Val: 0.7160, Test: 0.7150
Epoch: 037, Loss: 1.4982, Train: 0.9429, Val: 0.7200, Test: 0.7240
Epoch: 038, Loss: 1.4773, Train: 0.9500, Val: 0.7240, Test: 0.7360
Epoch: 039, Loss: 1.4381, Train: 0.9571, Val: 0.7360, Test: 0.7480
Epoch: 040, Loss: 1.4112, Train: 0.9571, Val: 0.7380, Test: 0.7490
Epoch: 041, Loss: 1.4095, Train: 0.9571, Val: 0.7420, Test: 0.7550
Epoch: 042, Loss: 1.4162, Train: 0.9571, Val: 0.7460, Test: 0.7580
Epoch: 043, Loss: 1.3663, Train: 0.9500, Val: 0.7500, Test: 0.7660
Epoch: 044, Loss: 1.3685, Train: 0.9500, Val: 0.7580, Test: 0.7680
Epoch: 045, Loss: 1.3422, Train: 0.9500, Val: 0.7600, Test: 0.7680
Epoch: 046, Loss: 1.3214, Train: 0.9429, Val: 0.7580, Test: 0.7680
Epoch: 047, Loss: 1.2734, Train: 0.9500, Val: 0.7580, Test: 0.7680
Epoch: 048, Loss: 1.3126, Train: 0.9500, Val: 0.7580, Test: 0.7680
Epoch: 049, Loss: 1.2881, Train: 0.9500, Val: 0.7540, Test: 0.7680
Epoch: 050, Loss: 1.2626, Train: 0.9571, Val: 0.7540, Test: 0.7680
Epoch: 051, Loss: 1.2456, Train: 0.9571, Val: 0.7480, Test: 0.7680
Epoch: 052, Loss: 1.2071, Train: 0.9500, Val: 0.7540, Test: 0.7680
Epoch: 053, Loss: 1.2169, Train: 0.9571, Val: 0.7560, Test: 0.7680
Epoch: 054, Loss: 1.2218, Train: 0.9571, Val: 0.7520, Test: 0.7680
Epoch: 055, Loss: 1.1987, Train: 0.9571, Val: 0.7560, Test: 0.7680
Epoch: 056, Loss: 1.1463, Train: 0.9571, Val: 0.7580, Test: 0.7680
Epoch: 057, Loss: 1.1489, Train: 0.9643, Val: 0.7620, Test: 0.7750
Epoch: 058, Loss: 1.0924, Train: 0.9643, Val: 0.7620, Test: 0.7750
Epoch: 059, Loss: 1.0912, Train: 0.9643, Val: 0.7700, Test: 0.7790
Epoch: 060, Loss: 1.0829, Train: 0.9500, Val: 0.7600, Test: 0.7790
Epoch: 061, Loss: 1.1365, Train: 0.9500, Val: 0.7600, Test: 0.7790
Epoch: 062, Loss: 1.0798, Train: 0.9643, Val: 0.7620, Test: 0.7790
Epoch: 063, Loss: 1.0520, Train: 0.9643, Val: 0.7580, Test: 0.7790
Epoch: 064, Loss: 1.0099, Train: 0.9643, Val: 0.7600, Test: 0.7790
Epoch: 065, Loss: 1.0357, Train: 0.9571, Val: 0.7560, Test: 0.7790
Epoch: 066, Loss: 1.0183, Train: 0.9571, Val: 0.7600, Test: 0.7790
Epoch: 067, Loss: 0.9524, Train: 0.9571, Val: 0.7700, Test: 0.7790
Epoch: 068, Loss: 0.9861, Train: 0.9643, Val: 0.7740, Test: 0.7900
Epoch: 069, Loss: 0.9573, Train: 0.9643, Val: 0.7780, Test: 0.7970
Epoch: 070, Loss: 0.9000, Train: 0.9643, Val: 0.7800, Test: 0.8040
Epoch: 071, Loss: 0.9590, Train: 0.9643, Val: 0.7880, Test: 0.8070
Epoch: 072, Loss: 0.8974, Train: 0.9643, Val: 0.7840, Test: 0.8070
Epoch: 073, Loss: 0.9184, Train: 0.9643, Val: 0.7800, Test: 0.8070
Epoch: 074, Loss: 0.8707, Train: 0.9571, Val: 0.7860, Test: 0.8070
Epoch: 075, Loss: 0.9259, Train: 0.9571, Val: 0.7820, Test: 0.8070
Epoch: 076, Loss: 0.8730, Train: 0.9571, Val: 0.7840, Test: 0.8070
Epoch: 077, Loss: 0.8948, Train: 0.9714, Val: 0.7820, Test: 0.8070
Epoch: 078, Loss: 0.8724, Train: 0.9714, Val: 0.7780, Test: 0.8070
Epoch: 079, Loss: 0.8221, Train: 0.9786, Val: 0.7740, Test: 0.8070
Epoch: 080, Loss: 0.8098, Train: 0.9786, Val: 0.7780, Test: 0.8070
Epoch: 081, Loss: 0.7698, Train: 0.9786, Val: 0.7800, Test: 0.8070
Epoch: 082, Loss: 0.7809, Train: 0.9786, Val: 0.7800, Test: 0.8070
Epoch: 083, Loss: 0.7953, Train: 0.9786, Val: 0.7800, Test: 0.8070
Epoch: 084, Loss: 0.7868, Train: 0.9786, Val: 0.7820, Test: 0.8070
Epoch: 085, Loss: 0.7766, Train: 0.9786, Val: 0.7880, Test: 0.8070
Epoch: 086, Loss: 0.7624, Train: 0.9786, Val: 0.7740, Test: 0.8070
Epoch: 087, Loss: 0.7438, Train: 0.9786, Val: 0.7760, Test: 0.8070
Epoch: 088, Loss: 0.7470, Train: 0.9786, Val: 0.7780, Test: 0.8070
Epoch: 089, Loss: 0.7488, Train: 0.9786, Val: 0.7780, Test: 0.8070
Epoch: 090, Loss: 0.7023, Train: 0.9786, Val: 0.7800, Test: 0.8070
Epoch: 091, Loss: 0.6802, Train: 0.9786, Val: 0.7740, Test: 0.8070
Epoch: 092, Loss: 0.7212, Train: 0.9786, Val: 0.7740, Test: 0.8070
Epoch: 093, Loss: 0.6714, Train: 0.9786, Val: 0.7820, Test: 0.8070
Epoch: 094, Loss: 0.7165, Train: 0.9786, Val: 0.7820, Test: 0.8070
Epoch: 095, Loss: 0.6479, Train: 0.9786, Val: 0.7800, Test: 0.8070
Epoch: 096, Loss: 0.6366, Train: 0.9786, Val: 0.7760, Test: 0.8070
Epoch: 097, Loss: 0.6625, Train: 0.9786, Val: 0.7700, Test: 0.8070
Epoch: 098, Loss: 0.6653, Train: 0.9786, Val: 0.7740, Test: 0.8070
Epoch: 099, Loss: 0.6744, Train: 0.9857, Val: 0.7760, Test: 0.8070
Epoch: 100, Loss: 0.6547, Train: 0.9857, Val: 0.7760, Test: 0.8070
Epoch: 101, Loss: 0.6400, Train: 0.9929, Val: 0.7800, Test: 0.8070
Epoch: 102, Loss: 0.6497, Train: 0.9929, Val: 0.7800, Test: 0.8070
Epoch: 103, Loss: 0.6488, Train: 0.9857, Val: 0.7800, Test: 0.8070
Epoch: 104, Loss: 0.6380, Train: 0.9857, Val: 0.7780, Test: 0.8070
Epoch: 105, Loss: 0.6252, Train: 0.9857, Val: 0.7780, Test: 0.8070
Epoch: 106, Loss: 0.6282, Train: 0.9857, Val: 0.7780, Test: 0.8070
Epoch: 107, Loss: 0.6614, Train: 0.9857, Val: 0.7760, Test: 0.8070
Epoch: 108, Loss: 0.6519, Train: 0.9857, Val: 0.7680, Test: 0.8070
Epoch: 109, Loss: 0.6497, Train: 0.9857, Val: 0.7720, Test: 0.8070
Epoch: 110, Loss: 0.5704, Train: 0.9857, Val: 0.7720, Test: 0.8070
Epoch: 111, Loss: 0.6315, Train: 0.9857, Val: 0.7700, Test: 0.8070
Epoch: 112, Loss: 0.6458, Train: 0.9929, Val: 0.7680, Test: 0.8070
Epoch: 113, Loss: 0.5775, Train: 0.9929, Val: 0.7660, Test: 0.8070
Epoch: 114, Loss: 0.6391, Train: 0.9929, Val: 0.7740, Test: 0.8070
Epoch: 115, Loss: 0.6158, Train: 0.9929, Val: 0.7720, Test: 0.8070
Epoch: 116, Loss: 0.5698, Train: 0.9929, Val: 0.7740, Test: 0.8070
Epoch: 117, Loss: 0.5502, Train: 0.9929, Val: 0.7720, Test: 0.8070
Epoch: 118, Loss: 0.5472, Train: 0.9857, Val: 0.7820, Test: 0.8070
Epoch: 119, Loss: 0.5653, Train: 0.9857, Val: 0.7800, Test: 0.8070
Epoch: 120, Loss: 0.5527, Train: 0.9857, Val: 0.7820, Test: 0.8070
Epoch: 121, Loss: 0.5604, Train: 0.9857, Val: 0.7840, Test: 0.8070
Epoch: 122, Loss: 0.5733, Train: 0.9857, Val: 0.7880, Test: 0.8070
Epoch: 123, Loss: 0.5320, Train: 0.9929, Val: 0.7840, Test: 0.8070
Epoch: 124, Loss: 0.4771, Train: 0.9929, Val: 0.7840, Test: 0.8070
Epoch: 125, Loss: 0.5333, Train: 0.9929, Val: 0.7820, Test: 0.8070
Epoch: 126, Loss: 0.5719, Train: 0.9929, Val: 0.7800, Test: 0.8070
Epoch: 127, Loss: 0.5523, Train: 0.9929, Val: 0.7780, Test: 0.8070
Epoch: 128, Loss: 0.5221, Train: 0.9929, Val: 0.7760, Test: 0.8070
Epoch: 129, Loss: 0.5272, Train: 0.9929, Val: 0.7720, Test: 0.8070
Epoch: 130, Loss: 0.4935, Train: 0.9929, Val: 0.7700, Test: 0.8070
Epoch: 131, Loss: 0.4917, Train: 0.9929, Val: 0.7720, Test: 0.8070
Epoch: 132, Loss: 0.4846, Train: 0.9929, Val: 0.7740, Test: 0.8070
Epoch: 133, Loss: 0.5885, Train: 0.9929, Val: 0.7760, Test: 0.8070
Epoch: 134, Loss: 0.5066, Train: 0.9929, Val: 0.7780, Test: 0.8070
Epoch: 135, Loss: 0.4784, Train: 0.9929, Val: 0.7760, Test: 0.8070
Epoch: 136, Loss: 0.5135, Train: 0.9929, Val: 0.7760, Test: 0.8070
Epoch: 137, Loss: 0.5279, Train: 0.9929, Val: 0.7740, Test: 0.8070
Epoch: 138, Loss: 0.5504, Train: 0.9929, Val: 0.7740, Test: 0.8070
Epoch: 139, Loss: 0.5620, Train: 0.9929, Val: 0.7720, Test: 0.8070
Epoch: 140, Loss: 0.4789, Train: 0.9929, Val: 0.7720, Test: 0.8070
Epoch: 141, Loss: 0.5244, Train: 0.9929, Val: 0.7740, Test: 0.8070
Epoch: 142, Loss: 0.4353, Train: 0.9929, Val: 0.7740, Test: 0.8070
Epoch: 143, Loss: 0.5215, Train: 0.9929, Val: 0.7780, Test: 0.8070
Epoch: 144, Loss: 0.4944, Train: 0.9929, Val: 0.7760, Test: 0.8070
Epoch: 145, Loss: 0.5004, Train: 0.9929, Val: 0.7780, Test: 0.8070
Epoch: 146, Loss: 0.4232, Train: 1.0000, Val: 0.7780, Test: 0.8070
Epoch: 147, Loss: 0.4691, Train: 1.0000, Val: 0.7800, Test: 0.8070
Epoch: 148, Loss: 0.5094, Train: 1.0000, Val: 0.7780, Test: 0.8070
Epoch: 149, Loss: 0.4910, Train: 1.0000, Val: 0.7740, Test: 0.8070
Epoch: 150, Loss: 0.4280, Train: 0.9929, Val: 0.7740, Test: 0.8070
Epoch: 151, Loss: 0.4502, Train: 0.9929, Val: 0.7740, Test: 0.8070
Epoch: 152, Loss: 0.4269, Train: 0.9929, Val: 0.7740, Test: 0.8070
Epoch: 153, Loss: 0.4774, Train: 1.0000, Val: 0.7820, Test: 0.8070
Epoch: 154, Loss: 0.5523, Train: 1.0000, Val: 0.7820, Test: 0.8070
Epoch: 155, Loss: 0.4473, Train: 1.0000, Val: 0.7820, Test: 0.8070
Epoch: 156, Loss: 0.5226, Train: 1.0000, Val: 0.7820, Test: 0.8070
Epoch: 157, Loss: 0.5067, Train: 1.0000, Val: 0.7820, Test: 0.8070
Epoch: 158, Loss: 0.5206, Train: 1.0000, Val: 0.7820, Test: 0.8070
Epoch: 159, Loss: 0.4208, Train: 1.0000, Val: 0.7820, Test: 0.8070
Epoch: 160, Loss: 0.4569, Train: 1.0000, Val: 0.7780, Test: 0.8070
Epoch: 161, Loss: 0.4278, Train: 0.9929, Val: 0.7760, Test: 0.8070
Epoch: 162, Loss: 0.4743, Train: 0.9929, Val: 0.7760, Test: 0.8070
Epoch: 163, Loss: 0.4533, Train: 0.9929, Val: 0.7740, Test: 0.8070
Epoch: 164, Loss: 0.5090, Train: 0.9929, Val: 0.7740, Test: 0.8070
Epoch: 165, Loss: 0.4572, Train: 0.9929, Val: 0.7760, Test: 0.8070
Epoch: 166, Loss: 0.4067, Train: 1.0000, Val: 0.7800, Test: 0.8070
Epoch: 167, Loss: 0.4043, Train: 1.0000, Val: 0.7800, Test: 0.8070
Epoch: 168, Loss: 0.4124, Train: 1.0000, Val: 0.7820, Test: 0.8070
Epoch: 169, Loss: 0.4384, Train: 1.0000, Val: 0.7840, Test: 0.8070
Epoch: 170, Loss: 0.4441, Train: 1.0000, Val: 0.7880, Test: 0.8070
Epoch: 171, Loss: 0.4342, Train: 1.0000, Val: 0.7840, Test: 0.8070
Epoch: 172, Loss: 0.4359, Train: 1.0000, Val: 0.7840, Test: 0.8070
Epoch: 173, Loss: 0.4276, Train: 1.0000, Val: 0.7800, Test: 0.8070
Epoch: 174, Loss: 0.4389, Train: 1.0000, Val: 0.7780, Test: 0.8070
Epoch: 175, Loss: 0.4305, Train: 1.0000, Val: 0.7740, Test: 0.8070
Epoch: 176, Loss: 0.4050, Train: 0.9929, Val: 0.7720, Test: 0.8070
Epoch: 177, Loss: 0.4482, Train: 0.9929, Val: 0.7720, Test: 0.8070
Epoch: 178, Loss: 0.4385, Train: 0.9929, Val: 0.7660, Test: 0.8070
Epoch: 179, Loss: 0.4078, Train: 1.0000, Val: 0.7740, Test: 0.8070
Epoch: 180, Loss: 0.4495, Train: 1.0000, Val: 0.7760, Test: 0.8070
Epoch: 181, Loss: 0.4262, Train: 1.0000, Val: 0.7760, Test: 0.8070
Epoch: 182, Loss: 0.4017, Train: 1.0000, Val: 0.7760, Test: 0.8070
Epoch: 183, Loss: 0.4048, Train: 1.0000, Val: 0.7740, Test: 0.8070
Epoch: 184, Loss: 0.4036, Train: 1.0000, Val: 0.7720, Test: 0.8070
Epoch: 185, Loss: 0.3428, Train: 1.0000, Val: 0.7700, Test: 0.8070
Epoch: 186, Loss: 0.3850, Train: 1.0000, Val: 0.7700, Test: 0.8070
Epoch: 187, Loss: 0.3592, Train: 1.0000, Val: 0.7720, Test: 0.8070
Epoch: 188, Loss: 0.4177, Train: 1.0000, Val: 0.7760, Test: 0.8070
Epoch: 189, Loss: 0.4018, Train: 1.0000, Val: 0.7740, Test: 0.8070
Epoch: 190, Loss: 0.4078, Train: 1.0000, Val: 0.7760, Test: 0.8070
Epoch: 191, Loss: 0.3827, Train: 1.0000, Val: 0.7760, Test: 0.8070
Epoch: 192, Loss: 0.3543, Train: 1.0000, Val: 0.7760, Test: 0.8070
Epoch: 193, Loss: 0.4075, Train: 1.0000, Val: 0.7760, Test: 0.8070
Epoch: 194, Loss: 0.3883, Train: 1.0000, Val: 0.7740, Test: 0.8070
Epoch: 195, Loss: 0.3212, Train: 1.0000, Val: 0.7740, Test: 0.8070
Epoch: 196, Loss: 0.4002, Train: 1.0000, Val: 0.7720, Test: 0.8070
Epoch: 197, Loss: 0.3917, Train: 1.0000, Val: 0.7720, Test: 0.8070
Epoch: 198, Loss: 0.3705, Train: 1.0000, Val: 0.7740, Test: 0.8070
Epoch: 199, Loss: 0.4083, Train: 1.0000, Val: 0.7740, Test: 0.8070
Epoch: 200, Loss: 0.3946, Train: 1.0000, Val: 0.7760, Test: 0.8070

@Looong01
Copy link
Owner

Looong01 commented Feb 20, 2023

The file libc10_hip.so is here:

(base) loong@home:~$ sudo find / -name libc10_hip.so
/home/loong/anaconda3/envs/PyTorch/lib/python3.10/site-packages/torch/lib/libc10_hip.so

It seems that you did not install torch of ROCm version correctly.
Are you sure that you install torch-rocm, not torch-cuda?
You can try to reinstall it or recreate the env.

@PavanKumarMiriyala
Copy link
Author

Yes, my torch installation with rocm 5.4.2 was messy. I cleaned it up and it is working now. Thanks @Looong01

@Looong01
Copy link
Owner

Right.

@Looong01 Looong01 reopened this Apr 8, 2023
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants