Skip to content

Latest commit

 

History

History
122 lines (97 loc) · 5.71 KB

README.md

File metadata and controls

122 lines (97 loc) · 5.71 KB

机器学习

平时注意构建知识体系,通过读论文和做实验不断为知识体系添砖加瓦。 本章侧重理论与实践,系统设计请参考机器学习系统设计

1. 面试要求

  • 熟悉常见模型的原理、代码、如何实际应用、优缺点、常见问题

    • 归纳偏置(Inductive Bias),数据同分布 IID
  • 考察范围包括ML breadth, ML depth, ML application, coding

    • 可能持续被追问为什么? 为什么某个trick能起作用?
    • 算法背后的数学原理,写出其主要数学公式,并能进行白板推导
    • 一些较新的领域,会考察论文细节
    • 每一个算法的scale, 如何将算法map-reduce化
    • 每一个算法的复杂度、参数量、计算量

2. 八股问题实例

  • 怎么解决nn的 over-fitting

    • 从数据角度,收集更多训练数据。求其次的话,数据增强方法。
    • 降低模型复杂度,如神经网络中的层数、宽度,树模型中的树深度、剪枝。模型正则化方法,如正则约束L2。集成学习方法,bagging方法。
    • Cross-validation to detect over-fitting.
    • Train with more data.
    • Data augmentation.
    • Feature selection.
    • Early stop.
    • Regularization.
    • Ensemble methods.
    • Pretrained model
  • 怎么解决under-fitting

    • 增加新特征,增加模型复杂度,减少正则化系数。
    • 训练模型的第一步就是要保证能够过拟合。
  • 怎么解决样本不平衡问题

    • https://imbalanced-learn.org/en/stable/user_guide.html
    • 如果是classification,data是long tail的,只是取头部80%的label,其他的label不要了,mark as others
    • 如果真的特别imbalance,99.99% 和0.01%,类似spam的情况。 就只能试试别的方法,outlier detection之类
    • 最后继续引申到样本的难易
    • 评价指标:AP(average_precision_score)
    • downsampling: faster convergence, save disk space, calibration(=upweight?)
    • upweight: every sample contribute the loss equality
  • 怎么解决数据缺失的问题

  • 怎么解决类别变量中的高基数特征 high-cardinality

  • 优化器,如何选择优化器

    • MSE, loglikelihood+GD
    • SGD-training data太大量
    • ADAM-sparse input
  • 数据收集

    • production data, label
    • Internet dataset
  • 分布不一致怎么解决

    • distribution不是特别指的feature的,也有label的。label只能说多收集data,还是balance data的问题。
    • data distribution 改变,就是做auto train, auto deploy.如果参数drop太多,只能人工干预重新训练
  • 推荐,scale\abtesting\trouble-shooting

  • 怎么提升模型的latency

    • 小模型
    • 知识蒸馏
    • squeeze model to 8bit or 4bit
  • Generative vs Discriminative

    • A generative model will learn categories of data while a discriminative model will simply learn the distinction between different categories of data.
    • Discriminative models will generally outperform generative models on classification tasks. Discriminative model learns the predictive distribution p(y|x) directly while generative model learns the joint distribution p(x, y) then obtains the predictive distribution based on Bayes' rule.
  • The bias-variance tradeoff is a central problem in supervised learning

    • Ideally, one wants to choose a model that both accurately captures the regularities in its training data, but also generalizes well to unseen data. Unfortunately, it is typically impossible to do both simultaneously.
    • High-variance learning methods may be able to represent their training set well but are at risk of overfitting to noisy or unrepresentative training data.
    • In contrast, algorithms with high bias typically produce simpler models that don't tend to overfit but may underfit their training data, failing to capture important regularities.
  • 模型的并行

    • 线性/逻辑回归
    • xgboost
    • cnn
    • RNN
    • transformer
    • 在深度学习框架中,单个张量的乘法内部会自动并行

3. 手写ML代码实例

  • 手写两层fully connected网络

  • 手写CNN

  • 手写KNN

  • 手写K-means

  • 手写softmax的backpropagation

  • 手写AUC

  • 手写SGD

  • 实现dropout,前向和后向

  • random sample with weights

  • 实现focal loss

  • 手写multi head attention

  • 视觉:手写iou/nms

  • NLP:

  • 延伸

    • 给一个LSTM network的结构,计算how many parameters
    • convolution layer的output size怎么算? 写出公式
    • 设计一个sparse matrix (包括加减乘等运算)

参考