-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlosses.py
213 lines (182 loc) · 8.98 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
"""
Author: Yonglong Tian ([email protected])
Date: May 07, 2020
"""
from __future__ import print_function
import torch
import torch.nn as nn
import numpy as np
from itertools import combinations
class SupConLoss(nn.Module):
"""Supervised Contrastive Learning: https://arxiv.org/pdf/2004.11362.pdf.
It also supports the unsupervised contrastive loss in SimCLR"""
def __init__(self, temperature=0.07, contrast_mode='all',
base_temperature=0.07):
super(SupConLoss, self).__init__()
self.temperature = temperature
self.contrast_mode = contrast_mode
self.base_temperature = base_temperature
def forward(self, features, labels=None, mask=None):
"""Compute loss for model. If both `labels` and `mask` are None,
it degenerates to SimCLR unsupervised loss:
https://arxiv.org/pdf/2002.05709.pdf
Args:
features: hidden vector of shape [bsz, n_views, ...].
labels: ground truth of shape [bsz].
mask: contrastive mask of shape [bsz, bsz], mask_{i,j}=1 if sample j
has the same class as sample i. Can be asymmetric.
Returns:
A loss scalar.
"""
device = (torch.device('cuda')
if features.is_cuda
else torch.device('cpu'))
if len(features.shape) < 3:
raise ValueError('`features` needs to be [bsz, n_views, ...],'
'at least 3 dimensions are required')
if len(features.shape) > 3:
features = features.view(features.shape[0], features.shape[1], -1)
batch_size = features.shape[0]
if labels is not None and mask is not None:
raise ValueError('Cannot define both `labels` and `mask`')
elif labels is None and mask is None:
mask = torch.eye(batch_size, dtype=torch.float32).to(device)
elif labels is not None:
labels = labels.contiguous().view(-1, 1)
if labels.shape[0] != batch_size:
raise ValueError('Num of labels does not match num of features')
mask = torch.eq(labels, labels.T).float().to(device)
else:
mask = mask.float().to(device)
contrast_count = features.shape[1]
contrast_feature = torch.cat(torch.unbind(features, dim=1), dim=0)
if self.contrast_mode == 'one':
anchor_feature = features[:, 0]
anchor_count = 1
elif self.contrast_mode == 'all':
anchor_feature = contrast_feature
anchor_count = contrast_count
else:
raise ValueError('Unknown mode: {}'.format(self.contrast_mode))
# compute logits
anchor_dot_contrast = torch.div(
torch.matmul(anchor_feature, contrast_feature.T),
self.temperature)
# for numerical stability
logits_max, _ = torch.max(anchor_dot_contrast, dim=1, keepdim=True)
logits = anchor_dot_contrast - logits_max.detach()
a = anchor_feature.detach().cpu().numpy()
b = contrast_feature.T.detach().cpu().numpy()
c = anchor_dot_contrast.detach().cpu().numpy()
d = np.matmul(a, b)
# tile mask
mask = mask.repeat(anchor_count, contrast_count)
# mask-out self-contrast cases
logits_mask = torch.scatter(
torch.ones_like(mask),
1,
torch.arange(batch_size * anchor_count).view(-1, 1).to(device),
0
)
mask = mask * logits_mask
# compute log_prob
exp_logits = torch.exp(logits) * logits_mask
log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True))
# compute mean of log-likelihood over positive
mean_log_prob_pos = (mask * log_prob).sum(1) / mask.sum(1)
# loss
loss = - (self.temperature / self.base_temperature) * mean_log_prob_pos
loss = loss.view(anchor_count, batch_size).mean()
return loss
def testNan(self, x):
x = x.detach().cpu().numpy()
return np.isnan(x).any()
# CLOCS 中用于对比学习的loss
def obtain_contrastive_loss(latent_embeddings, pids, trial):
""" Calculate NCE Loss For Latent Embeddings in Batch
Args:
latent_embeddings (torch.Tensor): embeddings from model for different perturbations of same instance (BxHxN)
pids (list): patient ids of instances in batch
Outputs:
loss (torch.Tensor): scalar NCE loss
"""
if trial in ['CMSC', 'CMLC', 'CMSMLC']:
pids = np.array(pids, dtype=np.object)
pid1, pid2 = np.meshgrid(pids, pids)
pid_matrix = pid1 + '-' + pid2
pids_of_interest = np.unique(pids + '-' + pids) # unique combinations of pids of interest i.e. matching
bool_matrix_of_interest = np.zeros((len(pids), len(pids)))
for pid in pids_of_interest:
bool_matrix_of_interest += pid_matrix == pid
rows1, cols1 = np.where(np.triu(bool_matrix_of_interest, 1))
rows2, cols2 = np.where(np.tril(bool_matrix_of_interest, -1))
nviews = set(range(latent_embeddings.shape[2]))
view_combinations = combinations(nviews, 2)
loss = 0
ncombinations = 0
loss_terms = 2
# 如果报错误 UnboundLocalError: local variable 'loss_terms' referenced before assignment
# 那就重启PyCharm吧!
for combination in view_combinations:
view1_array = latent_embeddings[:, :, combination[0]] # (BxH)
view2_array = latent_embeddings[:, :, combination[1]] # (BxH)
norm1_vector = view1_array.norm(dim=1).unsqueeze(0)
norm2_vector = view2_array.norm(dim=1).unsqueeze(0)
sim_matrix = torch.mm(view1_array, view2_array.transpose(0, 1))
norm_matrix = torch.mm(norm1_vector.transpose(0, 1), norm2_vector)
temperature = 0.1
argument = sim_matrix / (norm_matrix * temperature)
sim_matrix_exp = torch.exp(argument)
if trial == 'CMC':
""" Obtain Off Diagonal Entries """
# upper_triangle = torch.triu(sim_matrix_exp,1)
# lower_triangle = torch.tril(sim_matrix_exp,-1)
# off_diagonals = upper_triangle + lower_triangle
diagonals = torch.diag(sim_matrix_exp)
""" Obtain Loss Terms(s) """
loss_term1 = -torch.mean(torch.log(diagonals / torch.sum(sim_matrix_exp, 1)))
loss_term2 = -torch.mean(torch.log(diagonals / torch.sum(sim_matrix_exp, 0)))
loss += loss_term1 + loss_term2
loss_terms = 2
elif trial == 'SimCLR':
self_sim_matrix1 = torch.mm(view1_array, view1_array.transpose(0, 1))
self_norm_matrix1 = torch.mm(norm1_vector.transpose(0, 1), norm1_vector)
temperature = 0.1
argument = self_sim_matrix1 / (self_norm_matrix1 * temperature)
self_sim_matrix_exp1 = torch.exp(argument)
self_sim_matrix_off_diagonals1 = torch.triu(self_sim_matrix_exp1, 1) + torch.tril(self_sim_matrix_exp1, -1)
self_sim_matrix2 = torch.mm(view2_array, view2_array.transpose(0, 1))
self_norm_matrix2 = torch.mm(norm2_vector.transpose(0, 1), norm2_vector)
temperature = 0.1
argument = self_sim_matrix2 / (self_norm_matrix2 * temperature)
self_sim_matrix_exp2 = torch.exp(argument)
self_sim_matrix_off_diagonals2 = torch.triu(self_sim_matrix_exp2, 1) + torch.tril(self_sim_matrix_exp2, -1)
denominator_loss1 = torch.sum(sim_matrix_exp, 1) + torch.sum(self_sim_matrix_off_diagonals1, 1)
denominator_loss2 = torch.sum(sim_matrix_exp, 0) + torch.sum(self_sim_matrix_off_diagonals2, 0)
diagonals = torch.diag(sim_matrix_exp)
loss_term1 = -torch.mean(torch.log(diagonals / denominator_loss1))
loss_term2 = -torch.mean(torch.log(diagonals / denominator_loss2))
loss += loss_term1 + loss_term2
loss_terms = 2
elif trial in ['CMSC', 'CMLC', 'CMSMLC']: # ours #CMSMLC = positive examples are same instance and same patient
triu_elements = sim_matrix_exp[rows1, cols1]
tril_elements = sim_matrix_exp[rows2, cols2]
diag_elements = torch.diag(sim_matrix_exp)
triu_sum = torch.sum(sim_matrix_exp, 1)
tril_sum = torch.sum(sim_matrix_exp, 0)
loss_diag1 = -torch.mean(torch.log(diag_elements / triu_sum))
loss_diag2 = -torch.mean(torch.log(diag_elements / tril_sum))
loss_triu = -torch.mean(torch.log(triu_elements / triu_sum[rows1]))
loss_tril = -torch.mean(torch.log(tril_elements / tril_sum[cols2]))
loss = loss_diag1 + loss_diag2
loss_terms = 2
if len(rows1) > 0:
loss += loss_triu # technically need to add 1 more term for symmetry
loss_terms += 1
if len(rows2) > 0:
loss += loss_tril # technically need to add 1 more term for symmetry
loss_terms += 1
# print(loss,loss_triu,loss_tril)
ncombinations += 1
loss = loss / (loss_terms * ncombinations)
return loss