-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patheval.py
282 lines (241 loc) · 12 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import os
import argparse
import torch
import random
import math
import datetime
import numpy as np
from models.Network import *
from torch.utils.data import DataLoader
from dataload.dataset import CTS
from pytorch_msssim import MS_SSIM
from compressai.zoo import cheng2020_anchor, cheng2020_attn, mbt2018, mbt2018_mean
from tqdm import tqdm
metric_list = ['mse', 'ms-ssim']
parser = argparse.ArgumentParser(description='DMVC evaluation')
# evaluating parameters
intra_models_zoo = [
'cheng2020_anchor',
'cheng2020_attn',
'mbt2018',
'mbt2018_mean',
'vtm',
'x265',
'bpg',
]
test_class_list = [
'ClassB',
'ClassC',
'ClassD',
'ClassE',
'ClassF',
'UVG',
'MCLJCV',
]
parser.add_argument('--pretrain', default = '', help='Load pretrain model')
parser.add_argument('--img_dir', default = '')
parser.add_argument('--eval_lambda', default = 256, type = int, help = '[256, 512, 1024, 2048] for MSE, [8, 16, 32, 64] for MS-SSIM')
parser.add_argument('--metric', default = 'mse', choices = metric_list, help = 'mse or ms-ssim')
parser.add_argument('--intra_model', choices = intra_models_zoo, help = 'The intra coding method')
parser.add_argument('--test_class', default = 'ClassD', type = str, choices = test_class_list, help = 'Choose from the test dataset')
parser.add_argument('--gop_size', default = '0', type = int, help = 'The length of the gop')
args = parser.parse_args()
if args.metric == "mse":
# cheng2020_anchor
if args.intra_model == 'cheng2020_anchor':
lambda_to_qp_dict = {2048: 6, 1024: 5, 512: 4, 256: 3, 128: 2}
elif args.intra_model == 'cheng2020_attn':
lambda_to_qp_dict = {2048: 6, 1024: 5, 512: 4, 256: 3, 128: 2}
elif args.intra_model == 'mbt2018':
lambda_to_qp_dict = {2048: 6, 1024: 5, 512: 4, 256: 3, 128: 2}
elif args.intra_model == 'mbt2018_mean':
lambda_to_qp_dict = {2048: 6, 1024: 5, 512: 4, 256: 3, 128: 2}
elif args.intra_model == 'vtm':
lambda_to_qp_dict = {2048: 25, 1024: 27, 512: 31, 256: 33}
elif args.intra_model == 'x265':
lambda_to_qp_dict = {2048: 20, 1024: 23, 512: 26, 256: 29}
elif args.intra_model == 'bpg':
lambda_to_qp_dict = {2048: 24, 1024: 28, 512: 32, 256: 36}
else:
if args.intra_model == 'cheng2020_anchor':
lambda_to_qp_dict = {64: 6, 32: 5, 16: 4, 8: 3, 4: 2}
elif args.intra_model == 'mbt2018':
lambda_to_qp_dict = {64: 6, 32: 5, 16: 4, 8: 3, 4: 2}
elif args.intra_model == 'mbt2018_mean':
lambda_to_qp_dict = {64: 6, 32: 5, 16: 4, 8: 3, 4: 2}
elif args.intra_model == 'vtm':
lambda_to_qp_dict = {64: 25, 32: 27, 16: 31, 8: 33}
elif args.intra_model == 'x265':
lambda_to_qp_dict = {64: 20, 32: 23, 16: 26, 8: 29}
elif args.intra_model == 'bpg':
lambda_to_qp_dict = {64: 24, 32: 28, 16: 32, 8: 36}
if args.intra_model == 'vtm':
images_folder = 'images_intra'
elif args.intra_model == 'x265':
images_folder = 'h265'
elif args.intra_model == 'bpg':
images_folder = 'bpg'
else:
images_folder = 'images_intra'
return_intra_status = True if args.intra_model == 'vtm' or args.intra_model == 'x265' or args.intra_model == 'bpg' else False
test_dataset = CTS(args.img_dir, args.test_class, return_intra_status, args.intra_model, None, lambda_to_qp_dict[args.eval_lambda])
test_loader = DataLoader(dataset = test_dataset, shuffle = False, num_workers = 1, batch_size = 1)
activation = {}
def get_activation(name):
def hook(model, input, output):
activation[name] = output.detach()
return hook
def eval_model(net):
print("Evaluating...")
net.eval()
sum_psnr = 0
sum_bpp = 0
sum_intra_bpp = 0
sum_inter_bpp = 0
sum_intra_psnr = 0
sum_inter_psnr = 0
sum_ms_ssim = 0
t0 = datetime.datetime.now()
cnt = 0
if args.intra_model == 'cheng2020_anchor':
intra_model = cheng2020_anchor(quality = lambda_to_qp_dict[args.eval_lambda], pretrained = True, metric = args.metric)
elif args.intra_model == 'cheng2020_attn':
intra_model = cheng2020_attn(quality = lambda_to_qp_dict[args.eval_lambda], pretrained = True, metric = args.metric)
elif args.intra_model == 'mbt2018':
intra_model = mbt2018(quality = lambda_to_qp_dict[args.eval_lambda], pretrained = True, metric = args.metric)
elif args.intra_model == 'mbt2018_mean':
intra_model = mbt2018_mean(quality = lambda_to_qp_dict[args.eval_lambda], pretrained = True, metric = args.metric)
if not return_intra_status:
intra_model.cuda()
intra_model.eval()
# intra bits, motion bits, resi bits
sum_bpp_i = 0
sum_bpp_m = 0
sum_bpp_r = 0
for batch_idx, (frames, intra_bpp, gop_size, i_frames) in enumerate(test_loader):
batch_size, frame_length, _, h, w = frames.shape
if args.gop_size > 0:
gop_size = args.gop_size
else:
gop_size = gop_size.item()
#frames = frames.cuda()
#i_frames = i_frames.cuda()
rec_frames = []
ms_ssim_module = MS_SSIM(data_range = 1, size_average= True, channel = 3)
last_state = None
for frame_idx in tqdm(range(frame_length)):
with torch.no_grad():
if frame_idx % gop_size == 0:
if frame_idx:
frames = frames[:, gop_size : ]
if not return_intra_status:
result = intra_model(frames[:, frame_idx % gop_size].cuda())
intra_bits = sum((torch.log(likelihoods).sum() / (-math.log(2))) for likelihoods in result["likelihoods"].values())
x_hat = result["x_hat"].clamp(0., 1.)
intra_mse = torch.mean((x_hat - frames[:, frame_idx % gop_size].cuda()).pow(2))
intra_psnr = torch.mean(10 * (torch.log(1. / intra_mse) / np.log(10))).cpu().detach().numpy()
intra_ms_ssim = ms_ssim_module(x_hat, frames[:, frame_idx % gop_size].cuda())
sum_bpp += intra_bits.detach().cpu().numpy().item() / (batch_size * h * w)
sum_intra_bpp += intra_bits.detach().cpu().numpy().item() / (batch_size * h * w)
sum_bpp_i += intra_bits.detach().cpu().numpy().item() / (batch_size * h * w)
else:
intra_id = frame_idx // gop_size
intra_mse = torch.mean((i_frames[:, intra_id].cuda() - frames[:, frame_idx % gop_size].cuda()).pow(2))
intra_psnr = torch.mean(10 * (torch.log(1. / intra_mse) / np.log(10))).cpu().detach().numpy()
intra_ms_ssim = ms_ssim_module(i_frames[:, intra_id].cuda(), frames[:, frame_idx % gop_size].cuda())
sum_bpp += intra_bpp.detach().numpy().item()
sum_intra_bpp += intra_bpp.detach().numpy().item()
sum_bpp_i += intra_bpp.detach().cpu().numpy().item() / (batch_size * h * w)
sum_psnr += intra_psnr
sum_intra_psnr += intra_psnr
sum_ms_ssim += intra_ms_ssim
cnt += 1
#print('[{}] recon_psnr:{:.2f} bpp:{:.6f}'.format(frame_idx, intra_psnr, sum_intra_bpp))
if frame_idx == 0:
if not return_intra_status:
rec_frames = x_hat.unsqueeze(1)
else:
rec_frames = i_frames[:, intra_id].unsqueeze(1).cuda()
else:
if not return_intra_status:
rec_frames = torch.cat([rec_frames, x_hat.unsqueeze(1)], 1)
else:
rec_frames = torch.cat([rec_frames, i_frames[:, intra_id].unsqueeze(1).cuda()], 1)
continue
x_curr = frames[:, frame_idx % gop_size].cuda()
'''
if last_state is None:
x_hat, last_state, recon_loss, warp_next_loss, pred_next_loss, pred_loss, bpp, bpp_y, bpp_z, bpp_h, bpp_hp = net(x_curr, rec_frames[:, :], return_state = True)
else:
x_hat, last_state, recon_loss, warp_next_loss, pred_next_loss, pred_loss, bpp, bpp_y, bpp_z, bpp_h, bpp_hp = net(x_curr, rec_frames[:, -1:], last_state, return_state = True)
'''
x_hat, last_state, recon_loss, warp_next_loss, pred_next_loss, pred_loss, bpp, bpp_y, bpp_z, bpp_h, bpp_hp = net(x_curr, rec_frames, return_state = True)
'''
x_hat_write = (x_hat.squeeze().clamp(0., 1.).permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8)
imageio.imwrite("reco_{}.png".format(frame_idx), x_hat_write)
'''
pred_psnr = 10 * (torch.log(1 * 1 / pred_loss) / np.log(10)).cpu().detach().numpy()
pred_next_psnr = 10 * (torch.log(1 * 1 / pred_next_loss) / np.log(10)).cpu().detach().numpy()
recon_psnr = 10 * (torch.log(1 * 1 / recon_loss) / np.log(10)).cpu().detach().numpy()
warp_psnr = 10 * (torch.log(1 * 1 / warp_next_loss) / np.log(10)).cpu().detach().numpy()
#print("[{}] recon_psnr:{:.8f} pred_next_psnr:{:.8f} warp_psnr:{:.8f} bpp:{:.8f} bpp_y:{:.8f} bpp_z:{:.8f} bpp_h:{:.8f} bpp_hp:{:.8f} bpp_m:{:.8f} bpp_r:{:.8f}".format(frame_idx,
#recon_psnr, pred_next_psnr, warp_psnr, bpp, bpp_y, bpp_z, bpp_h, bpp_hp, bpp_h + bpp_hp, bpp_y + bpp_z))
sum_bpp_m += (bpp_h + bpp_hp)
sum_bpp_r += (bpp_y + bpp_z)
rec_frames = torch.cat([rec_frames, x_hat.unsqueeze(1).clamp(0., 1.).detach()], 1)
inter_ms_ssim = ms_ssim_module(x_hat, x_curr)
if rec_frames.size(1) > 3:
rec_frames = rec_frames[:, -3 :]
cnt += 1
sum_psnr += recon_psnr
sum_bpp += bpp.cpu().detach().numpy()
sum_inter_bpp += bpp.cpu().detach().numpy()
sum_inter_psnr += recon_psnr
sum_ms_ssim += inter_ms_ssim
intra_frame_length = frame_length // gop_size
inter_frame_length = frame_length - intra_frame_length
#print('intra_bpp: {:.6f} inter_bpp:{:.6f} intra_psnr:{:.4f} inter_psnr:{:.4f}'.format(sum_intra_bpp / intra_frame_length, sum_inter_bpp/ inter_frame_length,
#sum_intra_psnr / intra_frame_length, sum_inter_psnr / inter_frame_length))
#exit(0)
sum_intra_psnr = 0
sum_inter_psnr = 0
sum_intra_bpp = 0
sum_inter_bpp = 0
t1 = datetime.datetime.now()
deltatime = t1 - t0
#print(deltatime, t0, t1)
print("recon_psnr:{:.4f} ms_ssim:{:.6f} bpp:{:.6f} time:{:.4f}".format(sum_psnr / cnt, sum_ms_ssim / cnt, sum_bpp / cnt, (deltatime.seconds + 1e-6 * deltatime.microseconds) / cnt))
sum_tmp = sum_bpp_i + sum_bpp_m + sum_bpp_r
#print("bpp_i:{:.2f} bpp_m:{:.6f} hpp_r:{:.6f} ".format(sum_bpp_i / sum_tmp, sum_bpp_m / sum_tmp, sum_bpp_r / sum_tmp))
def check_dir_exist(check_dir):
if not os.path.exists(check_dir):
os.makedirs(check_dir)
def main():
print(args)
model = DMVC()
model.cuda()
num_params = 0
for param in model.parameters():
num_params += param.numel()
print('The total number of the learnable parameters:', num_params)
if args.pretrain != '':
print('Load the model from {}'.format(args.pretrain))
pretrained_dict = torch.load(args.pretrain)
model_dict = model.state_dict()
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
'''
for k, v in pretrained_dict.items():
print(k)
'''
eval_model(model)
if __name__ == "__main__":
torch.manual_seed(0)
torch.cuda.manual_seed_all(0)
random.seed(0)
np.random.seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.enabled = True
main()