forked from respec/HSPsquared
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutilities.py
389 lines (328 loc) · 14.2 KB
/
utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
''' Copyright (c) 2020 by RESPEC, INC.
Author: Robert Heaphy, Ph.D.
License: LGPL2
General routines for HSP2 '''
from pandas import Series, date_range
from pandas.tseries.offsets import Minute
from numpy import zeros, full, tile, float64
from numba import types
from numba.typed import Dict
flowtype = {
# EXTERNAL FLOWS
'PREC','WIND','WINMOV','SOLRAD','PETINP','POTEV','SURLI','IFWLI','AGWLI',
'SLSED','IVOL','ICON',
# COMPUTED FLOWS
'PRECIP','SNOWF','PRAIN','SNOWE','WYIELD','MELT', #SNOW
'SUPY','SURO','IFWO','AGWO','PERO','IGWI','PET','CEPE','UZET','LZET', #PWATER
'AGWET','BASET','TAET','IFWI','UZI','INFIL','PERC','LZI','AGWI', #PWATER
'SOHT','IOHT','AOHT','POHT','SODOXM','SOCO2M','IODOXM','IOCO2M', #PWTGAS
'AODOXM','AOCO2M','PODOXM','POCO2M', #PWTGAS
'SUPY','SURO','PET','IMPEV' #IWATER
'SOSLD', #SOLIDS
'SOHT','SODOXM','SOCO2M', #IWTGAS
'SOQS','SOQO','SOQUAL', #IQUAL
'IVOL','PRSUPY','VOLEV','ROVOL','POTEV', #HYDR
'ICON','ROCON', #CONS
'IHEAT','HTEXCH','ROHEAT','QTOTAL','QSOLAR','QLONGW','QEVAP','QCON', #HTRCH
'QPREC','QBED', #HTRCH
}
def make_numba_dict(uci):
'''
Move UCI dictionary data to Numba dict for FLAGS, STATES, PARAMETERS.
Parameters
----------
uci : Python dictionary
The uci dictionary contains xxxx.uci file data
Returns
-------
ui : Numba dictionary
Same content as uci except for strings
'''
ui = Dict.empty(key_type=types.unicode_type, value_type=types.float64)
for name in set(uci.keys()) & {'FLAGS', 'PARAMETERS', 'STATES'}:
for key, value in uci[name].items():
if type(value) in {int, float}:
ui[key] = float(value)
return ui
def transform(ts, name, how, siminfo):
'''
upsample (disaggregate) /downsample (aggregate) ts to freq and trim to [start:stop]
how methods (default is SAME)
disaggregate: LAST, SAME, DIV, ZEROFILL, INTERPOLATE
aggregate: MEAN, SUM, MAX, MIN
NOTE: these routines work for both regular and sparse timeseries input
'''
tsfreq = ts.index.freq
freq = Minute(siminfo['delt'])
stop = siminfo['stop']
# append duplicate of last point to force processing last full interval
if ts.index[-1] < stop:
ts[stop] = ts[-1]
if freq == tsfreq:
pass
elif tsfreq == None: # Sparse time base, frequency not defined
ts = ts.reindex(siminfo['tbase']).ffill().bfill()
elif how == 'SAME':
ts = ts.resample(freq).ffill() # tsfreq >= freq assumed, or bad user choice
elif not how:
if name in flowtype:
if 'Y' in str(tsfreq) or 'M' in str(tsfreq) or tsfreq > freq:
if 'M' in str(tsfreq): ratio = 1.0/730.5
elif 'Y' in str(tsfreq): ratio = 1.0/8766.0
else: ratio = freq / tsfreq
ts = (ratio * ts).resample(freq).ffill() # HSP2 how = div
else:
ts = ts.resample(freq).sum()
else:
if 'Y' in str(tsfreq) or 'M' in str(tsfreq) or tsfreq > freq:
ts = ts.resample(freq).ffill()
else:
ts = ts.resample(freq).mean()
elif how == 'MEAN': ts = ts.resample(freq).mean()
elif how == 'SUM': ts = ts.resample(freq).sum()
elif how == 'MAX': ts = ts.resample(freq).max()
elif how == 'MIN': ts = ts.resample(freq).min()
elif how == 'LAST': ts = ts.resample(freq).ffill()
elif how == 'DIV': ts = (ts * (freq / ts.index.freq)).resample(freq).ffill()
elif how == 'ZEROFILL': ts = ts.resample(freq).fillna(0.0)
elif how == 'INTERPOLATE': ts = ts.resample(freq).interpolate()
else:
print(f'UNKNOWN method in TRANS, {how}')
return zeros(1)
start, steps = siminfo['start'], siminfo['steps']
return ts[start:stop].to_numpy().astype(float64)[0:steps]
def hoursval(siminfo, hours24, dofirst=False, lapselike=False):
'''create hours flags, flag on the hour or lapse table over full simulation'''
start = siminfo['start']
stop = siminfo['stop']
freq = Minute(siminfo['delt'])
dr = date_range(start=f'{start.year}-01-01', end=f'{stop.year}-12-31', freq=Minute(60))
hours = tile(hours24, (len(dr) + 23) // 24).astype(float)
if dofirst:
hours[0] = 1
ts = Series(hours[0:len(dr)], dr)
if lapselike:
if ts.index.freq > freq: # upsample
ts = ts.resample(freq).asfreq().ffill()
elif ts.index.freq < freq: # downsample
ts = ts.resample(freq).mean()
else:
if ts.index.freq > freq: # upsample
ts = ts.resample(freq).asfreq().fillna(0.0)
elif ts.index.freq < freq: # downsample
ts = ts.resample(freq).max()
return ts.truncate(start, stop).to_numpy()
def hourflag(siminfo, hourfg, dofirst=False):
'''timeseries with 1 at desired hour and zero otherwise'''
hours24 = zeros(24)
hours24[hourfg] = 1.0
return hoursval(siminfo, hours24, dofirst)
def monthval(siminfo, monthly):
''' returns value at start of month for all times within the month'''
start = siminfo['start']
stop = siminfo['stop']
freq = Minute(siminfo['delt'])
months = tile(monthly, stop.year - start.year + 1).astype(float)
dr = date_range(start=f'{start.year}-01-01', end=f'{stop.year}-12-31',
freq='MS')
ts = Series(months, index=dr).resample('D').ffill()
if ts.index.freq > freq: # upsample
ts = ts.resample(freq).asfreq().ffill()
elif ts.index.freq < freq: # downsample
ts = ts.resample(freq).mean()
return ts.truncate(start, stop).to_numpy()
def dayval(siminfo, monthly):
'''broadcasts HSPF monthly data onto timeseries at desired freq with HSPF
interpolation to day, but constant within day'''
start = siminfo['start']
stop = siminfo['stop']
freq = Minute(siminfo['delt'])
months = tile(monthly, stop.year - start.year + 1).astype(float)
dr = date_range(start=f'{start.year}-01-01', end=f'{stop.year}-12-31',
freq='MS')
ts = Series(months, index=dr).resample('D').interpolate('time')
if ts.index.freq > freq: # upsample
ts = ts.resample(freq).ffill()
elif ts.index.freq < freq: # downsample
ts = ts.resample(freq).mean()
return ts.truncate(start, stop).to_numpy()
def initm(siminfo, ui, flag, monthly, default):
''' initialize timeseries with HSPF interpolation of monthly array or with fixed value'''
if flag and monthly in ui:
month = ui[monthly].values()
return dayval(siminfo, list(month))
else:
return full(siminfo['steps'], default)
def initmd(siminfo, store, monthly, default):
''' initialize timeseries from HSPF month data table'''
if monthly in store:
month = store[monthly].values[0]
return dayval(siminfo, list(month))
else:
return full(siminfo['steps'], default)
def versions(import_list=[]):
'''
Versions of libraries required by HSP2
Parameters
----------
import_list : list of strings, optional
DESCRIPTION. The default is [].
Returns
-------
Pandas DataFrame
Libary verson strings.
'''
import sys
import platform
import pandas
import importlib
import datetime
names = ['Python']
data = [sys.version]
import_list = ['HSP2', 'numpy', 'numba', 'pandas'] + list(import_list)
for import_ in import_list:
imodule = importlib.import_module(import_)
names.append(import_)
data.append(imodule.__version__)
names.extend(['os', 'processor', 'Date/Time'])
data.extend([platform.platform(), platform.processor(),
str(datetime.datetime.now())[0:19]])
return pandas.DataFrame(data, index=names, columns=['version'])
def get_timeseries(store, ext_sourcesdd, siminfo):
''' makes timeseries for the current timestep and trucated to the sim interval'''
# explicit creation of Numba dictionary with signatures
ts = Dict.empty(key_type=types.unicode_type, value_type=types.float64[:])
for row in ext_sourcesdd:
if row.SVOL == '*':
path = f'TIMESERIES/{row.SVOLNO}'
if path in store:
temp1 = store[path]
else:
print('Get Timeseries ERROR for', path)
continue
else:
temp1 = read_hdf(row.SVOL, path)
if row.MFACTOR != 1.0:
temp1 *= row.MFACTOR
t = transform(temp1, row.TMEMN, row.TRAN, siminfo)
# in some cases the subscript is irrelevant, like '1' or '1 1', and we can leave it off.
# there are other cases where it is needed to distinguish, such as ISED and '1' or '1 1'.
tname = f'{row.TMEMN}{row.TMEMSB}'
if row.TMEMN in {'GATMP', 'PREC', 'DTMPG', 'WINMOV', 'DSOLAR', 'SOLRAD', 'CLOUD', 'PETINP', 'IRRINP', 'POTEV', 'DEWTMP', 'WIND',
'IVOL', 'IHEAT'}:
tname = f'{row.TMEMN}'
elif row.TMEMN == 'ISED':
if row.TMEMSB == '1 1' or row.TMEMSB == '1' or row.TMEMSB == '':
tname = 'ISED1'
else:
tname = 'ISED' + row.TMEMSB[0]
elif row.TMEMN in {'ICON', 'IDQAL', 'ISQAL'}:
tmemsb1 = '1'
tmemsb2 = '1'
if len(row.TMEMSB) > 0:
tmemsb1 = row.TMEMSB[0]
if len(row.TMEMSB) > 2:
tmemsb2 = row.TMEMSB[-1]
sname, tname = expand_timeseries_names('', '', '', '', row.TMEMN, tmemsb1, tmemsb2)
if tname in ts:
ts[tname] += t
else:
ts[tname] = t
return ts
def expand_timeseries_names(sgrp, smemn, smemsb1, smemsb2, tmemn, tmemsb1, tmemsb2):
#special cases to expand timeseries names to resolve with output names in hdf5 file
if tmemn == 'ICON':
if tmemsb1 == '':
tmemn = 'CONS1_ICON'
else:
tmemn = 'CONS' + tmemsb1 + '_ICON'
if smemn == 'OCON':
if smemsb2 == '':
smemn = 'CONS1_OCON' + smemsb1
else:
smemn = 'CONS' + smemsb2 + '_OCON' + smemsb1
if smemn == 'ROCON':
if smemsb1 == '':
smemn = 'CONS1_ROCON'
else:
smemn = 'CONS' + smemsb1 + '_ROCON'
# GQUAL:
if tmemn == 'IDQAL':
if tmemsb1 == '':
tmemn = 'GQUAL1_IDQAL'
else:
tmemn = 'GQUAL' + tmemsb1 + '_IDQAL'
if tmemn == 'ISQAL1' or tmemn == 'ISQAL2' or tmemn == 'ISQAL3':
if tmemsb2 == '':
tmemn = 'GQUAL1_' + tmemn
else:
tmemn = 'GQUAL' + tmemsb2 + '_' + tmemn
if tmemn == 'ISQAL':
if tmemsb2 == '':
tmemn = 'GQUAL1_' + 'ISQAL' + tmemsb1
else:
tmemn = 'GQUAL' + tmemsb2 + '_' + 'ISQAL' + tmemsb1
if smemn == 'ODQAL':
smemn = 'GQUAL' + smemsb1 + '_ODQAL' + smemsb2 # smemsb2 is exit number
if smemn == 'OSQAL':
smemn = 'GQUAL' + smemsb1 + '_OSQAL' + smemsb2 # smemsb2 is ssc plus exit number
if smemn == 'RODQAL':
smemn = 'GQUAL' + smemsb1 + '_RODQAL'
if smemn == 'ROSQAL':
smemn = 'GQUAL' + smemsb2 + '_ROSQAL' + smemsb1 # smemsb1 is ssc
# OXRX:
if smemn == 'OXCF1':
smemn = 'OXCF1_' + smemsb1
if smemn == 'OXCF2':
smemn = 'OXCF2_' + smemsb1 + smemsb2 # smemsb1 is exit #
if tmemn == 'OXIF':
tmemn = 'OXIF' + tmemsb1
if sgrp == "PQUAL" or sgrp == "IQUAL": # could be from pqual or iqual
if smemsb1 == '':
smemsb1 = '1'
smemn = sgrp + smemsb1 + '_' + smemn
# NUTRX - dissolved species:
if smemn == 'NUCF1': # total outflow
smemn = 'NUCF1_' + smemsb1
if smemn == 'NUCF9': # exit-specific outflow
smemn = 'NUCF9_' + smemsb1 + smemsb2 # smemsb1 is exit #
if tmemn == 'NUIF1':
tmemn = 'NUIF1_' + tmemsb1
if sgrp == "PQUAL" or sgrp == "IQUAL": # could be from pqual or iqual
if smemsb1 == '':
smemsb1 = '1'
smemn = sgrp + smemsb1 + '_' + smemn
# NUTRX - particulate species:
if smemn == 'NUCF2': # total outflow
smemn = 'NUCF2_' + smemsb1 + smemsb2 # smemsb1 is sediment class
if smemn == 'OSNH4' or smemn == 'OSPO4': # exit-specific outflow
smemn = smemn + '_' + smemsb1 + smemsb2 # smemsb1 is exit #, smemsb2 is sed class
if tmemn == 'NUIF2':
tmemn = 'NUIF2_' + tmemsb1 + tmemsb2
if sgrp == "PQUAL" or sgrp == "IQUAL": # could be from pqual or iqual
if smemsb1 == '':
smemsb1 = '1'
smemn = sgrp + smemsb1 + '_' + smemn
# PLANK:
if smemn == 'PKCF1': # total outflow
smemn = 'PKCF1_' + smemsb1 # smemsb1 is species index
if smemn == 'PKCF2': # exit-specific outflow
smemn = 'PKCF2_' + smemsb1 + smemsb2 # smemsb1 is exit #, smemsb2 is species index
if tmemn == 'PKIF':
tmemn = 'PKIF' + tmemsb1 # tmemsb1 is species index
if sgrp == "PQUAL" or sgrp == "IQUAL": # could be from pqual or iqual
if smemsb1 == '':
smemsb1 = '1'
smemn = sgrp + smemsb1 + '_' + smemn
# PHCARB:
if smemn == 'PHCF1' and smemsb1 == 1: # total outflow
smemn = 'ROTIC'
if smemn == 'PHCF1' and smemsb1 == 2: # total outflow
smemn = 'ROCO2'
if smemn == 'PHCF2' and smemsb2 == 1: # exit-specific outflow
smemn = 'OTIC' + smemsb1 # smemsb1 is exit #, smemsb2 is species index
if smemn == 'PHCF2' and smemsb2 == 2: # exit-specific outflow
smemn = 'OCO2' + smemsb1 # smemsb1 is exit #, smemsb2 is species index
if tmemn == 'PHIF':
tmemn = 'PHIF' + tmemsb1 # tmemsb1 is species index
return smemn, tmemn