-
Notifications
You must be signed in to change notification settings - Fork 0
/
ok_color.h
688 lines (533 loc) · 18.6 KB
/
ok_color.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
#ifndef __OK_COLOR_H__
#define __OK_COLOR_H__
// Copyright(c) 2021 Björn Ottosson
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this softwareand associated documentation files(the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and /or sell copies
// of the Software, and to permit persons to whom the Software is furnished to do
// so, subject to the following conditions :
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
// Source: https://bottosson.github.io/posts/colorpicker/
// NOTE: This file was modified from the original source
#include <math.h>
#include <float.h>
typedef struct Lab { float L; float a; float b; } Lab;
typedef struct RGB { float r; float g; float b; } RGB;
typedef struct Linear_RGB { float r; float g; float b; } Linear_RGB;
typedef struct HSV { float h; float s; float v; } HSV;
typedef struct HSL { float h; float s; float l; } HSL;
typedef struct LC { float L; float C; } LC;
// Alternative representation of (L_cusp, C_cusp)
// Encoded so S = C_cusp/L_cusp and T = C_cusp/(1-L_cusp)
// The maximum value for C in the triangle is then found as fmin(S*L, T*(1-L)), for a given L
typedef struct ST { float S; float T; } ST;
#ifdef OK_COLOR_IMPLEMENTATION
const float pi = 3.1415926535897932384626433832795028841971693993751058209749445923078164062f;
float clamp(float x, float min, float max)
{
if (x < min)
return min;
if (x > max)
return max;
return x;
}
float sgn(float x)
{
return (float)(0.f < x) - (float)(x < 0.f);
}
float srgb_transfer_function(float a)
{
return .0031308f >= a ? 12.92f * a : 1.055f * powf(a, .4166666666666667f) - .055f;
}
float srgb_transfer_function_inv(float a)
{
return .04045f < a ? powf((a + .055f) / 1.055f, 2.4f) : a / 12.92f;
}
Lab linear_srgb_to_oklab(Linear_RGB c)
{
float l = 0.4122214708f * c.r + 0.5363325363f * c.g + 0.0514459929f * c.b;
float m = 0.2119034982f * c.r + 0.6806995451f * c.g + 0.1073969566f * c.b;
float s = 0.0883024619f * c.r + 0.2817188376f * c.g + 0.6299787005f * c.b;
float l_ = cbrtf(l);
float m_ = cbrtf(m);
float s_ = cbrtf(s);
return (Lab){
0.2104542553f * l_ + 0.7936177850f * m_ - 0.0040720468f * s_,
1.9779984951f * l_ - 2.4285922050f * m_ + 0.4505937099f * s_,
0.0259040371f * l_ + 0.7827717662f * m_ - 0.8086757660f * s_,
};
}
Linear_RGB oklab_to_linear_srgb(Lab c)
{
float l_ = c.L + 0.3963377774f * c.a + 0.2158037573f * c.b;
float m_ = c.L - 0.1055613458f * c.a - 0.0638541728f * c.b;
float s_ = c.L - 0.0894841775f * c.a - 1.2914855480f * c.b;
float l = l_ * l_ * l_;
float m = m_ * m_ * m_;
float s = s_ * s_ * s_;
return (Linear_RGB){
+4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s,
-1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s,
-0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s,
};
}
// Finds the maximum saturation possible for a given hue that fits in sRGB
// Saturation here is defined as S = C/L
// a and b must be normalized so a^2 + b^2 == 1
float compute_max_saturation(float a, float b)
{
// Max saturation will be when one of r, g or b goes below zero.
// Select different coefficients depending on which component goes below zero first
float k0, k1, k2, k3, k4, wl, wm, ws;
if (-1.88170328f * a - 0.80936493f * b > 1)
{
// Red component
k0 = +1.19086277f; k1 = +1.76576728f; k2 = +0.59662641f; k3 = +0.75515197f; k4 = +0.56771245f;
wl = +4.0767416621f; wm = -3.3077115913f; ws = +0.2309699292f;
}
else if (1.81444104f * a - 1.19445276f * b > 1)
{
// Green component
k0 = +0.73956515f; k1 = -0.45954404f; k2 = +0.08285427f; k3 = +0.12541070f; k4 = +0.14503204f;
wl = -1.2684380046f; wm = +2.6097574011f; ws = -0.3413193965f;
}
else
{
// Blue component
k0 = +1.35733652f; k1 = -0.00915799f; k2 = -1.15130210f; k3 = -0.50559606f; k4 = +0.00692167f;
wl = -0.0041960863f; wm = -0.7034186147f; ws = +1.7076147010f;
}
// Approximate max saturation using a polynomial:
float S = k0 + k1 * a + k2 * b + k3 * a * a + k4 * a * b;
// Do one step Halley's method to get closer
// this gives an error less than 10e6, except for some blue hues where the dS/dh is close to infinite
// this should be sufficient for most applications, otherwise do two/three steps
float k_l = +0.3963377774f * a + 0.2158037573f * b;
float k_m = -0.1055613458f * a - 0.0638541728f * b;
float k_s = -0.0894841775f * a - 1.2914855480f * b;
{
float l_ = 1.f + S * k_l;
float m_ = 1.f + S * k_m;
float s_ = 1.f + S * k_s;
float l = l_ * l_ * l_;
float m = m_ * m_ * m_;
float s = s_ * s_ * s_;
float l_dS = 3.f * k_l * l_ * l_;
float m_dS = 3.f * k_m * m_ * m_;
float s_dS = 3.f * k_s * s_ * s_;
float l_dS2 = 6.f * k_l * k_l * l_;
float m_dS2 = 6.f * k_m * k_m * m_;
float s_dS2 = 6.f * k_s * k_s * s_;
float f = wl * l + wm * m + ws * s;
float f1 = wl * l_dS + wm * m_dS + ws * s_dS;
float f2 = wl * l_dS2 + wm * m_dS2 + ws * s_dS2;
S = S - f * f1 / (f1 * f1 - 0.5f * f * f2);
}
return S;
}
// finds L_cusp and C_cusp for a given hue
// a and b must be normalized so a^2 + b^2 == 1
LC find_cusp(float a, float b)
{
// First, find the maximum saturation (saturation S = C/L)
float S_cusp = compute_max_saturation(a, b);
// Convert to linear sRGB to find the first point where at least one of r,g or b >= 1:
Linear_RGB rgb_at_max = oklab_to_linear_srgb((Lab){ 1, S_cusp * a, S_cusp * b });
float L_cusp = cbrtf(1.f / fmax(fmax(rgb_at_max.r, rgb_at_max.g), rgb_at_max.b));
float C_cusp = L_cusp * S_cusp;
return (LC){ L_cusp , C_cusp };
}
// Finds intersection of the line defined by
// L = L0 * (1 - t) + t * L1;
// C = t * C1;
// a and b must be normalized so a^2 + b^2 == 1
float find_gamut_intersection(float a, float b, float L1, float C1, float L0, LC cusp)
{
// Find the intersection for upper and lower half seprately
float t;
if (((L1 - L0) * cusp.C - (cusp.L - L0) * C1) <= 0.f)
{
// Lower half
t = cusp.C * L0 / (C1 * cusp.L + cusp.C * (L0 - L1));
}
else
{
// Upper half
// First intersect with triangle
t = cusp.C * (L0 - 1.f) / (C1 * (cusp.L - 1.f) + cusp.C * (L0 - L1));
// Then one step Halley's method
{
float dL = L1 - L0;
float dC = C1;
float k_l = +0.3963377774f * a + 0.2158037573f * b;
float k_m = -0.1055613458f * a - 0.0638541728f * b;
float k_s = -0.0894841775f * a - 1.2914855480f * b;
float l_dt = dL + dC * k_l;
float m_dt = dL + dC * k_m;
float s_dt = dL + dC * k_s;
// If higher accuracy is required, 2 or 3 iterations of the following block can be used:
{
float L = L0 * (1.f - t) + t * L1;
float C = t * C1;
float l_ = L + C * k_l;
float m_ = L + C * k_m;
float s_ = L + C * k_s;
float l = l_ * l_ * l_;
float m = m_ * m_ * m_;
float s = s_ * s_ * s_;
float ldt = 3 * l_dt * l_ * l_;
float mdt = 3 * m_dt * m_ * m_;
float sdt = 3 * s_dt * s_ * s_;
float ldt2 = 6 * l_dt * l_dt * l_;
float mdt2 = 6 * m_dt * m_dt * m_;
float sdt2 = 6 * s_dt * s_dt * s_;
float r = 4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s - 1;
float r1 = 4.0767416621f * ldt - 3.3077115913f * mdt + 0.2309699292f * sdt;
float r2 = 4.0767416621f * ldt2 - 3.3077115913f * mdt2 + 0.2309699292f * sdt2;
float u_r = r1 / (r1 * r1 - 0.5f * r * r2);
float t_r = -r * u_r;
float g = -1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s - 1;
float g1 = -1.2684380046f * ldt + 2.6097574011f * mdt - 0.3413193965f * sdt;
float g2 = -1.2684380046f * ldt2 + 2.6097574011f * mdt2 - 0.3413193965f * sdt2;
float u_g = g1 / (g1 * g1 - 0.5f * g * g2);
float t_g = -g * u_g;
float b = -0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s - 1;
float b1 = -0.0041960863f * ldt - 0.7034186147f * mdt + 1.7076147010f * sdt;
float b2 = -0.0041960863f * ldt2 - 0.7034186147f * mdt2 + 1.7076147010f * sdt2;
float u_b = b1 / (b1 * b1 - 0.5f * b * b2);
float t_b = -b * u_b;
t_r = u_r >= 0.f ? t_r : FLT_MAX;
t_g = u_g >= 0.f ? t_g : FLT_MAX;
t_b = u_b >= 0.f ? t_b : FLT_MAX;
t += fmin(t_r, fmin(t_g, t_b));
}
}
}
return t;
}
Linear_RGB gamut_clip_preserve_chroma(Linear_RGB rgb)
{
if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0)
return rgb;
Lab lab = linear_srgb_to_oklab(rgb);
float L = lab.L;
float eps = 0.00001f;
float C = fmax(eps, sqrtf(lab.a * lab.a + lab.b * lab.b));
float a_ = lab.a / C;
float b_ = lab.b / C;
float L0 = clamp(L, 0, 1);
LC cusp = find_cusp(a_, b_);
float t = find_gamut_intersection(a_, b_, L, C, L0, cusp);
float L_clipped = L0 * (1 - t) + t * L;
float C_clipped = t * C;
return oklab_to_linear_srgb((Lab){ L_clipped, C_clipped * a_, C_clipped * b_ });
}
Linear_RGB gamut_clip_project_to_0_5(Linear_RGB rgb)
{
if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0)
return rgb;
Lab lab = linear_srgb_to_oklab(rgb);
float L = lab.L;
float eps = 0.00001f;
float C = fmax(eps, sqrtf(lab.a * lab.a + lab.b * lab.b));
float a_ = lab.a / C;
float b_ = lab.b / C;
float L0 = 0.5;
LC cusp = find_cusp(a_, b_);
float t = find_gamut_intersection(a_, b_, L, C, L0, cusp);
float L_clipped = L0 * (1 - t) + t * L;
float C_clipped = t * C;
return oklab_to_linear_srgb((Lab){ L_clipped, C_clipped * a_, C_clipped * b_ });
}
Linear_RGB gamut_clip_project_to_L_cusp(Linear_RGB rgb)
{
if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0)
return rgb;
Lab lab = linear_srgb_to_oklab(rgb);
float L = lab.L;
float eps = 0.00001f;
float C = fmax(eps, sqrtf(lab.a * lab.a + lab.b * lab.b));
float a_ = lab.a / C;
float b_ = lab.b / C;
LC cusp = find_cusp(a_, b_);
float L0 = cusp.L;
float t = find_gamut_intersection(a_, b_, L, C, L0, cusp);
float L_clipped = L0 * (1 - t) + t * L;
float C_clipped = t * C;
return oklab_to_linear_srgb((Lab){ L_clipped, C_clipped * a_, C_clipped * b_ });
}
#define gamut_clip_adaptive_L0_0_5(rgb) gamut_clip_adaptive_L0_0_5_alpha(rgb, 0.05f)
Linear_RGB gamut_clip_adaptive_L0_0_5_alpha(Linear_RGB rgb, float alpha)
{
if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0)
return rgb;
Lab lab = linear_srgb_to_oklab(rgb);
float L = lab.L;
float eps = 0.00001f;
float C = fmax(eps, sqrtf(lab.a * lab.a + lab.b * lab.b));
float a_ = lab.a / C;
float b_ = lab.b / C;
float Ld = L - 0.5f;
float e1 = 0.5f + fabs(Ld) + alpha * C;
float L0 = 0.5f * (1.f + sgn(Ld) * (e1 - sqrtf(e1 * e1 - 2.f * fabs(Ld))));
LC cusp = find_cusp(a_, b_);
float t = find_gamut_intersection(a_, b_, L, C, L0, cusp);
float L_clipped = L0 * (1.f - t) + t * L;
float C_clipped = t * C;
return oklab_to_linear_srgb((Lab){ L_clipped, C_clipped * a_, C_clipped * b_ });
}
#define gamut_clip_adaptive_L0_L_cusp(rgb) gamut_clip_adaptive_L0_L_cusp_alpha(rgb, 0.05f)
Linear_RGB gamut_clip_adaptive_L0_L_cusp_alpha(Linear_RGB rgb, float alpha)
{
if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0)
return rgb;
Lab lab = linear_srgb_to_oklab(rgb);
float L = lab.L;
float eps = 0.00001f;
float C = fmax(eps, sqrtf(lab.a * lab.a + lab.b * lab.b));
float a_ = lab.a / C;
float b_ = lab.b / C;
LC cusp = find_cusp(a_, b_);
float Ld = L - cusp.L;
float k = 2.f * (Ld > 0 ? 1.f - cusp.L : cusp.L);
float e1 = 0.5f * k + fabs(Ld) + alpha * C / k;
float L0 = cusp.L + 0.5f * (sgn(Ld) * (e1 - sqrtf(e1 * e1 - 2.f * k * fabs(Ld))));
float t = find_gamut_intersection(a_, b_, L, C, L0, cusp);
float L_clipped = L0 * (1.f - t) + t * L;
float C_clipped = t * C;
return oklab_to_linear_srgb((Lab){ L_clipped, C_clipped * a_, C_clipped * b_ });
}
float toe(float x)
{
const float k_1 = 0.206f;
const float k_2 = 0.03f;
const float k_3 = (1.f + k_1) / (1.f + k_2);
return 0.5f * (k_3 * x - k_1 + sqrtf((k_3 * x - k_1) * (k_3 * x - k_1) + 4 * k_2 * k_3 * x));
}
float toe_inv(float x)
{
const float k_1 = 0.206f;
const float k_2 = 0.03f;
const float k_3 = (1.f + k_1) / (1.f + k_2);
return (x * x + k_1 * x) / (k_3 * (x + k_2));
}
ST to_ST(LC cusp)
{
float L = cusp.L;
float C = cusp.C;
return (ST){ C / L, C / (1 - L) };
}
// Returns a smooth approximation of the location of the cusp
// This polynomial was created by an optimization process
// It has been designed so that S_mid < S_max and T_mid < T_max
ST get_ST_mid(float a_, float b_)
{
float S = 0.11516993f + 1.f / (
+7.44778970f + 4.15901240f * b_
+ a_ * (-2.19557347f + 1.75198401f * b_
+ a_ * (-2.13704948f - 10.02301043f * b_
+ a_ * (-4.24894561f + 5.38770819f * b_ + 4.69891013f * a_
)))
);
float T = 0.11239642f + 1.f / (
+1.61320320f - 0.68124379f * b_
+ a_ * (+0.40370612f + 0.90148123f * b_
+ a_ * (-0.27087943f + 0.61223990f * b_
+ a_ * (+0.00299215f - 0.45399568f * b_ - 0.14661872f * a_
)))
);
return (ST){ S, T };
}
typedef struct Cs { float C_0; float C_mid; float C_max; } Cs;
Cs get_Cs(float L, float a_, float b_)
{
LC cusp = find_cusp(a_, b_);
float C_max = find_gamut_intersection(a_, b_, L, 1, L, cusp);
ST ST_max = to_ST(cusp);
// Scale factor to compensate for the curved part of gamut shape:
float k = C_max / fmin((L * ST_max.S), (1 - L) * ST_max.T);
float C_mid;
{
ST ST_mid = get_ST_mid(a_, b_);
// Use a soft minimum function, instead of a sharp triangle shape to get a smooth value for chroma.
float C_a = L * ST_mid.S;
float C_b = (1.f - L) * ST_mid.T;
C_mid = 0.9f * k * sqrtf(sqrtf(1.f / (1.f / (C_a * C_a * C_a * C_a) + 1.f / (C_b * C_b * C_b * C_b))));
}
float C_0;
{
// for C_0, the shape is independent of hue, so ST are constant. Values picked to roughly be the average values of ST.
float C_a = L * 0.4f;
float C_b = (1.f - L) * 0.8f;
// Use a soft minimum function, instead of a sharp triangle shape to get a smooth value for chroma.
C_0 = sqrtf(1.f / (1.f / (C_a * C_a) + 1.f / (C_b * C_b)));
}
return (Cs){ C_0, C_mid, C_max };
}
RGB okhsl_to_srgb(HSL hsl)
{
float h = hsl.h;
float s = hsl.s;
float l = hsl.l;
if (l == 1.0f)
{
return (RGB){ 1.f, 1.f, 1.f };
}
else if (l == 0.f)
{
return (RGB){ 0.f, 0.f, 0.f };
}
float a_ = cosf(2.f * pi * h);
float b_ = sinf(2.f * pi * h);
float L = toe_inv(l);
Cs cs = get_Cs(L, a_, b_);
float C_0 = cs.C_0;
float C_mid = cs.C_mid;
float C_max = cs.C_max;
float mid = 0.8f;
float mid_inv = 1.25f;
float C, t, k_0, k_1, k_2;
if (s < mid)
{
t = mid_inv * s;
k_1 = mid * C_0;
k_2 = (1.f - k_1 / C_mid);
C = t * k_1 / (1.f - k_2 * t);
}
else
{
t = (s - mid)/ (1 - mid);
k_0 = C_mid;
k_1 = (1.f - mid) * C_mid * C_mid * mid_inv * mid_inv / C_0;
k_2 = (1.f - (k_1) / (C_max - C_mid));
C = k_0 + t * k_1 / (1.f - k_2 * t);
}
Linear_RGB rgb = oklab_to_linear_srgb((Lab){ L, C * a_, C * b_ });
return (RGB){
srgb_transfer_function(rgb.r),
srgb_transfer_function(rgb.g),
srgb_transfer_function(rgb.b),
};
}
HSL srgb_to_okhsl(RGB rgb)
{
Lab lab = linear_srgb_to_oklab((Linear_RGB){
srgb_transfer_function_inv(rgb.r),
srgb_transfer_function_inv(rgb.g),
srgb_transfer_function_inv(rgb.b)
});
float C = sqrtf(lab.a * lab.a + lab.b * lab.b);
float a_ = lab.a / C;
float b_ = lab.b / C;
float L = lab.L;
float h = 0.5f + 0.5f * atan2f(-lab.b, -lab.a) / pi;
Cs cs = get_Cs(L, a_, b_);
float C_0 = cs.C_0;
float C_mid = cs.C_mid;
float C_max = cs.C_max;
// Inverse of the interpolation in okhsl_to_srgb:
float mid = 0.8f;
float mid_inv = 1.25f;
float s;
if (C < C_mid)
{
float k_1 = mid * C_0;
float k_2 = (1.f - k_1 / C_mid);
float t = C / (k_1 + k_2 * C);
s = t * mid;
}
else
{
float k_0 = C_mid;
float k_1 = (1.f - mid) * C_mid * C_mid * mid_inv * mid_inv / C_0;
float k_2 = (1.f - (k_1) / (C_max - C_mid));
float t = (C - k_0) / (k_1 + k_2 * (C - k_0));
s = mid + (1.f - mid) * t;
}
float l = toe(L);
return (HSL){ h, s, l };
}
RGB okhsv_to_srgb(HSV hsv)
{
float h = hsv.h;
float s = hsv.s;
float v = hsv.v;
float a_ = cosf(2.f * pi * h);
float b_ = sinf(2.f * pi * h);
LC cusp = find_cusp(a_, b_);
ST ST_max = to_ST(cusp);
float S_max = ST_max.S;
float T_max = ST_max.T;
float S_0 = 0.5f;
float k = 1 - S_0 / S_max;
// first we compute L and V as if the gamut is a perfect triangle:
// L, C when v==1:
float L_v = 1 - s * S_0 / (S_0 + T_max - T_max * k * s);
float C_v = s * T_max * S_0 / (S_0 + T_max - T_max * k * s);
float L = v * L_v;
float C = v * C_v;
// then we compensate for both toe and the curved top part of the triangle:
float L_vt = toe_inv(L_v);
float C_vt = C_v * L_vt / L_v;
float L_new = toe_inv(L);
C = C * L_new / L;
L = L_new;
Linear_RGB rgb_scale = oklab_to_linear_srgb((Lab){ L_vt, a_ * C_vt, b_ * C_vt });
float scale_L = cbrtf(1.f / fmax(fmax(rgb_scale.r, rgb_scale.g), fmax(rgb_scale.b, 0.f)));
L = L * scale_L;
C = C * scale_L;
Linear_RGB rgb = oklab_to_linear_srgb((Lab){ L, C * a_, C * b_ });
return (RGB){
srgb_transfer_function(rgb.r),
srgb_transfer_function(rgb.g),
srgb_transfer_function(rgb.b),
};
}
HSV srgb_to_okhsv(RGB rgb)
{
Lab lab = linear_srgb_to_oklab((Linear_RGB){
srgb_transfer_function_inv(rgb.r),
srgb_transfer_function_inv(rgb.g),
srgb_transfer_function_inv(rgb.b)
});
float C = sqrtf(lab.a * lab.a + lab.b * lab.b);
float a_ = lab.a / C;
float b_ = lab.b / C;
float L = lab.L;
float h = 0.5f + 0.5f * atan2f(-lab.b, -lab.a) / pi;
LC cusp = find_cusp(a_, b_);
ST ST_max = to_ST(cusp);
float S_max = ST_max.S;
float T_max = ST_max.T;
float S_0 = 0.5f;
float k = 1 - S_0 / S_max;
// first we find L_v, C_v, L_vt and C_vt
float t = T_max / (C + L * T_max);
float L_v = t * L;
float C_v = t * C;
float L_vt = toe_inv(L_v);
float C_vt = C_v * L_vt / L_v;
// we can then use these to invert the step that compensates for the toe and the curved top part of the triangle:
Linear_RGB rgb_scale = oklab_to_linear_srgb((Lab){ L_vt, a_ * C_vt, b_ * C_vt });
float scale_L = cbrtf(1.f / fmax(fmax(rgb_scale.r, rgb_scale.g), fmax(rgb_scale.b, 0.f)));
L = L / scale_L;
C = C / scale_L;
C = C * toe(L) / L;
L = toe(L);
// we can now compute v and s:
float v = L / L_v;
float s = (S_0 + T_max) * C_v / ((T_max * S_0) + T_max * k * C_v);
return (HSV){ h, s, v };
}
#endif // OK_COLOR_IMPLEMENTATION
#endif // __OK_COLOR_H__