-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_stock.py
126 lines (97 loc) · 4.03 KB
/
main_stock.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
''' Create a simple genomics data stats dashboard.
Choose pages to show in the drop down widgets, and make selections
on the plots to update the summary and histograms accordingly.
.. note::
Running this example requires downloading sample data. See
the included `README`_ for more information.
Use the ``bokeh serve`` command to run the example by executing:
bokeh serve stocks
at your command prompt. Then navigate to the URL
http://localhost:5006/stocks
.. _README: https://github.com/bokeh/bokeh/blob/master/examples/app/stocks/README.md
'''
from functools import lru_cache
from os.path import dirname, join
import pandas as pd
from bokeh.io import curdoc
from bokeh.layouts import column, row
from bokeh.models import ColumnDataSource, PreText, Select
from bokeh.plotting import figure
DATA_DIR = join(dirname(__file__), 'daily')
DEFAULT_TICKERS = ['AAPL', 'GOOG', 'INTC', 'BRCM', 'YHOO']
def nix(val, lst):
return [x for x in lst if x != val]
@lru_cache()
def load_ticker(ticker):
fname = join(DATA_DIR, 'table_%s.csv' % ticker.lower())
data = pd.read_csv(fname, header=None, parse_dates=['date'],
names=['date', 'foo', 'o', 'h', 'l', 'c', 'v'])
data = data.set_index('date')
return pd.DataFrame({ticker: data.c, ticker+'_returns': data.c.diff()})
@lru_cache()
def get_data(t1, t2):
df1 = load_ticker(t1)
df2 = load_ticker(t2)
data = pd.concat([df1, df2], axis=1)
data = data.dropna()
data['t1'] = data[t1]
data['t2'] = data[t2]
data['t1_returns'] = data[t1+'_returns']
data['t2_returns'] = data[t2+'_returns']
return data
# set up widgets
stats = PreText(text='', width=500)
ticker1 = Select(value='AAPL', options=nix('GOOG', DEFAULT_TICKERS))
ticker2 = Select(value='GOOG', options=nix('AAPL', DEFAULT_TICKERS))
# set up plots
source = ColumnDataSource(data=dict(date=[], t1=[], t2=[], t1_returns=[], t2_returns=[]))
source_static = ColumnDataSource(data=dict(date=[], t1=[], t2=[], t1_returns=[], t2_returns=[]))
tools = 'pan,wheel_zoom,xbox_select,reset'
corr = figure(plot_width=350, plot_height=350,
tools='pan,wheel_zoom,box_select,reset')
corr.circle('t1_returns', 't2_returns', size=2, source=source,
selection_color="orange", alpha=0.6, nonselection_alpha=0.1, selection_alpha=0.4)
ts1 = figure(plot_width=900, plot_height=200, tools=tools, x_axis_type='datetime', active_drag="xbox_select")
ts1.line('date', 't1', source=source_static)
ts1.circle('date', 't1', size=1, source=source, color=None, selection_color="orange")
ts2 = figure(plot_width=900, plot_height=200, tools=tools, x_axis_type='datetime', active_drag="xbox_select")
ts2.x_range = ts1.x_range
ts2.line('date', 't2', source=source_static)
ts2.circle('date', 't2', size=1, source=source, color=None, selection_color="orange")
# set up callbacks
def ticker1_change(attrname, old, new):
ticker2.options = nix(new, DEFAULT_TICKERS)
update()
def ticker2_change(attrname, old, new):
ticker1.options = nix(new, DEFAULT_TICKERS)
update()
def update(selected=None):
t1, t2 = ticker1.value, ticker2.value
df = get_data(t1, t2)
data = df[['t1', 't2', 't1_returns', 't2_returns']]
source.data = data
source_static.data = data
update_stats(df, t1, t2)
corr.title.text = '%s returns vs. %s returns' % (t1, t2)
ts1.title.text, ts2.title.text = t1, t2
def update_stats(data, t1, t2):
stats.text = str(data[[t1, t2, t1+'_returns', t2+'_returns']].describe())
ticker1.on_change('value', ticker1_change)
ticker2.on_change('value', ticker2_change)
def selection_change(attrname, old, new):
t1, t2 = ticker1.value, ticker2.value
data = get_data(t1, t2)
selected = source.selected.indices
if selected:
data = data.iloc[selected, :]
update_stats(data, t1, t2)
source.selected.on_change('indices', selection_change)
# set up layout
widgets = column(ticker1, ticker2, stats)
main_row = row(corr, widgets)
series = column(ts1, ts2)
layout = column(main_row, series)
# initialize
update()
curdoc().add_root(layout)
curdoc().title = "Stocks"