This document outlines the deployment process for a ChatQnA application utilizing the GenAIComps microservice pipeline on Intel Xeon server. The steps include Docker image creation, container deployment via Docker Compose, and service execution to integrate microservices such as embedding
, retriever
, rerank
, and llm
. We will publish the Docker images to Docker Hub soon, it will simplify the deployment process for this service.
To apply a Xeon server on AWS, start by creating an AWS account if you don't have one already. Then, head to the EC2 Console to begin the process. Within the EC2 service, select the Amazon EC2 M7i or M7i-flex instance type to leverage the power of 4th Generation Intel Xeon Scalable processors. These instances are optimized for high-performance computing and demanding workloads.
For detailed information about these instance types, you can refer to this link. Once you've chosen the appropriate instance type, proceed with configuring your instance settings, including network configurations, security groups, and storage options.
After launching your instance, you can connect to it using SSH (for Linux instances) or Remote Desktop Protocol (RDP) (for Windows instances). From there, you'll have full access to your Xeon server, allowing you to install, configure, and manage your applications as needed.
Certain ports in the EC2 instance need to opened up in the security group, for the microservices to work with the curl commands
See one example below. Please open up these ports in the EC2 instance based on the IP addresses you want to allow
redis-vector-db
===============
Port 6379 - Open to 0.0.0.0/0
Port 8001 - Open to 0.0.0.0/0
tei_embedding_service
=====================
Port 6006 - Open to 0.0.0.0/0
embedding
=========
Port 6000 - Open to 0.0.0.0/0
retriever
=========
Port 7000 - Open to 0.0.0.0/0
tei_xeon_service
================
Port 8808 - Open to 0.0.0.0/0
reranking
=========
Port 8000 - Open to 0.0.0.0/0
tgi_service
===========
Port 9009 - Open to 0.0.0.0/0
llm
===
Port 9000 - Open to 0.0.0.0/0
chaqna-xeon-backend-server
==========================
Port 8888 - Open to 0.0.0.0/0
chaqna-xeon-ui-server
=====================
Port 5173 - Open to 0.0.0.0/0
First of all, you need to build Docker Images locally and install the python package of it.
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps
docker build --no-cache -t opea/embedding-tei:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/langchain/docker/Dockerfile .
docker build --no-cache -t opea/retriever-redis:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/retrievers/langchain/redis/docker/Dockerfile .
docker build --no-cache -t opea/reranking-tei:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/reranks/langchain/docker/Dockerfile .
docker build --no-cache -t opea/llm-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/tgi/Dockerfile .
docker build --no-cache -t opea/dataprep-redis:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/dataprep/redis/langchain/docker/Dockerfile .
cd ..
To construct the Mega Service, we utilize the GenAIComps microservice pipeline within the chatqna.py
Python script. Build MegaService Docker image via below command:
git clone https://github.com/opea-project/GenAIExamples.git
cd GenAIExamples/ChatQnA/docker
docker build --no-cache -t opea/chatqna:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
cd ../../..
Build frontend Docker image via below command:
cd GenAIExamples/ChatQnA/docker/ui/
docker build --no-cache -t opea/chatqna-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile .
cd ../../../..
Build frontend Docker image that enables Conversational experience with ChatQnA megaservice via below command:
Export the value of the public IP address of your Xeon server to the host_ip
environment variable
cd GenAIExamples/ChatQnA/docker/ui/
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:8888/v1/chatqna"
export DATAPREP_SERVICE_ENDPOINT="http://${host_ip}:6007/v1/dataprep"
docker build --no-cache -t opea/chatqna-conversation-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy --build-arg BACKEND_SERVICE_ENDPOINT=$BACKEND_SERVICE_ENDPOINT --build-arg DATAPREP_SERVICE_ENDPOINT=$DATAPREP_SERVICE_ENDPOINT -f ./docker/Dockerfile.react .
cd ../../../..
Then run the command docker images
, you will have the following 7 Docker Images:
opea/dataprep-redis:latest
opea/embedding-tei:latest
opea/retriever-redis:latest
opea/reranking-tei:latest
opea/llm-tgi:latest
opea/chatqna:latest
opea/chatqna-ui:latest
Since the docker_compose.yaml
will consume some environment variables, you need to setup them in advance as below.
Export the value of the public IP address of your Xeon server to the host_ip
environment variable
Change the External_Public_IP below with the actual IPV4 value
export host_ip="External_Public_IP"
Export the value of your Huggingface API token to the your_hf_api_token
environment variable
Change the Your_Huggingface_API_Token below with tyour actual Huggingface API Token value
export your_hf_api_token="Your_Huggingface_API_Token"
Append the value of the public IP address to the no_proxy list
export your_no_proxy=${your_no_proxy},"External_Public_IP"
export no_proxy=${your_no_proxy}
export http_proxy=${your_http_proxy}
export https_proxy=${your_http_proxy}
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
export LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
export TEI_EMBEDDING_ENDPOINT="http://${host_ip}:6006"
export TEI_RERANKING_ENDPOINT="http://${host_ip}:8808"
export TGI_LLM_ENDPOINT="http://${host_ip}:9009"
export REDIS_URL="redis://${host_ip}:6379"
export INDEX_NAME="rag-redis"
export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
export MEGA_SERVICE_HOST_IP=${host_ip}
export EMBEDDING_SERVICE_HOST_IP=${host_ip}
export RETRIEVER_SERVICE_HOST_IP=${host_ip}
export RERANK_SERVICE_HOST_IP=${host_ip}
export LLM_SERVICE_HOST_IP=${host_ip}
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:8888/v1/chatqna"
export DATAPREP_SERVICE_ENDPOINT="http://${host_ip}:6007/v1/dataprep"
Note: Please replace with host_ip
with you external IP address, do not use localhost.
Before running the docker compose command, you need to be in the folder that has the docker compose yaml file
cd GenAIExamples/ChatQnA/docker/xeon/
docker compose -f docker_compose.yaml up -d
- TEI Embedding Service
curl ${host_ip}:6006/embed \
-X POST \
-d '{"inputs":"What is Deep Learning?"}' \
-H 'Content-Type: application/json'
- Embedding Microservice
curl http://${host_ip}:6000/v1/embeddings\
-X POST \
-d '{"text":"hello"}' \
-H 'Content-Type: application/json'
- Retriever Microservice
To validate the retriever microservice, you need to generate a mock embedding vector of length 768 in Python script:
import random
embedding = [random.uniform(-1, 1) for _ in range(768)]
print(embedding)
Then substitute your mock embedding vector for the ${your_embedding}
in the following cURL command:
curl http://${host_ip}:7000/v1/retrieval \
-X POST \
-d '{"text":"What is the revenue of Nike in 2023?","embedding":"'"${your_embedding}"'"}' \
-H 'Content-Type: application/json'
- TEI Reranking Service
curl http://${host_ip}:8808/rerank \
-X POST \
-d '{"query":"What is Deep Learning?", "texts": ["Deep Learning is not...", "Deep learning is..."]}' \
-H 'Content-Type: application/json'
- Reranking Microservice
curl http://${host_ip}:8000/v1/reranking\
-X POST \
-d '{"initial_query":"What is Deep Learning?", "retrieved_docs": [{"text":"Deep Learning is not..."}, {"text":"Deep learning is..."}]}' \
-H 'Content-Type: application/json'
- TGI Service
curl http://${host_ip}:9009/generate \
-X POST \
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}' \
-H 'Content-Type: application/json'
- LLM Microservice
curl http://${host_ip}:9000/v1/chat/completions\
-X POST \
-d '{"query":"What is Deep Learning?","max_new_tokens":17,"top_k":10,"top_p":0.95,"typical_p":0.95,"temperature":0.01,"repetition_penalty":1.03,"streaming":true}' \
-H 'Content-Type: application/json'
- MegaService
curl http://${host_ip}:8888/v1/chatqna -H "Content-Type: application/json" -d '{
"messages": "What is the revenue of Nike in 2023?"
}'
- Dataprep Microservice(Optional)
If you want to update the default knowledge base, you can use the following commands:
Update Knowledge Base via Local File Upload:
curl -X POST "http://${host_ip}:6007/v1/dataprep" \
-H "Content-Type: multipart/form-data" \
-F "files=@./nke-10k-2023.pdf"
This command updates a knowledge base by uploading a local file for processing. Update the file path according to your environment.
Add Knowledge Base via HTTP Links:
curl -X POST "http://${host_ip}:6007/v1/dataprep" \
-H "Content-Type: multipart/form-data" \
-F 'link_list=["https://opea.dev"]'
This command updates a knowledge base by submitting a list of HTTP links for processing.
LangSmith offers tools to debug, evaluate, and monitor language models and intelligent agents. It can be used to assess benchmark data for each microservice. Before launching your services with docker compose -f docker_compose.yaml up -d
, you need to enable LangSmith tracing by setting the LANGCHAIN_TRACING_V2
environment variable to true and configuring your LangChain API key.
Here's how you can do it:
- Install the latest version of LangSmith:
pip install -U langsmith
- Set the necessary environment variables:
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=ls_...
To access the frontend, open the following URL in your browser: http://{host_ip}:5173. By default, the UI runs on port 5173 internally. If you prefer to use a different host port to access the frontend, you can modify the port mapping in the docker_compose.yaml
file as shown below:
chaqna-gaudi-ui-server:
image: opea/chatqna-ui:latest
...
ports:
- "80:5173"
To access the Conversational UI frontend, open the following URL in your browser: http://{host_ip}:5174. By default, the UI runs on port 80 internally. If you prefer to use a different host port to access the frontend, you can modify the port mapping in the docker_compose.yaml
file as shown below:
chaqna-xeon-conversation-ui-server:
image: opea/chatqna-conversation-ui:latest
...
ports:
- "80:80"
Here is an example of running ChatQnA:
Here is an example of running ChatQnA with Conversational UI (React):