forked from Jermmy/pytorch-quantization-demo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
module.py
414 lines (312 loc) · 14 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from function import FakeQuantize
def calcScaleZeroPoint(min_val, max_val, num_bits=8):
qmin = 0.
qmax = 2. ** num_bits - 1.
scale = (max_val - min_val) / (qmax - qmin)
zero_point = qmax - max_val / scale
if zero_point < qmin:
zero_point = torch.tensor([qmin], dtype=torch.float32).to(min_val.device)
elif zero_point > qmax:
# zero_point = qmax
zero_point = torch.tensor([qmax], dtype=torch.float32).to(max_val.device)
zero_point.round_()
return scale, zero_point
def quantize_tensor(x, scale, zero_point, num_bits=8, signed=False):
if signed:
qmin = - 2. ** (num_bits - 1)
qmax = 2. ** (num_bits - 1) - 1
else:
qmin = 0.
qmax = 2. ** num_bits - 1.
q_x = zero_point + x / scale
q_x.clamp_(qmin, qmax).round_()
return q_x
def dequantize_tensor(q_x, scale, zero_point):
return scale * (q_x - zero_point)
def search(M):
P = 7000
n = 1
while True:
Mo = int(round(2 ** n * M))
# Mo
approx_result = Mo * P >> n
result = int(round(M * P))
error = approx_result - result
print("n=%d, Mo=%f, approx=%d, result=%d, error=%f" % \
(n, Mo, approx_result, result, error))
if math.fabs(error) < 1e-9 or n >= 22:
return Mo, n
n += 1
class QParam(nn.Module):
def __init__(self, num_bits=8):
super(QParam, self).__init__()
self.num_bits = num_bits
scale = torch.tensor([], requires_grad=False)
zero_point = torch.tensor([], requires_grad=False)
min = torch.tensor([], requires_grad=False)
max = torch.tensor([], requires_grad=False)
self.register_buffer('scale', scale)
self.register_buffer('zero_point', zero_point)
self.register_buffer('min', min)
self.register_buffer('max', max)
def update(self, tensor):
if self.max.nelement() == 0 or self.max.data < tensor.max().data:
self.max.data = tensor.max().data
self.max.clamp_(min=0)
if self.min.nelement() == 0 or self.min.data > tensor.min().data:
self.min.data = tensor.min().data
self.min.clamp_(max=0)
self.scale, self.zero_point = calcScaleZeroPoint(self.min, self.max, self.num_bits)
def quantize_tensor(self, tensor):
return quantize_tensor(tensor, self.scale, self.zero_point, num_bits=self.num_bits)
def dequantize_tensor(self, q_x):
return dequantize_tensor(q_x, self.scale, self.zero_point)
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
key_names = ['scale', 'zero_point', 'min', 'max']
for key in key_names:
value = getattr(self, key)
value.data = state_dict[prefix + key].data
state_dict.pop(prefix + key)
def __str__(self):
info = 'scale: %.10f ' % self.scale
info += 'zp: %d ' % self.zero_point
info += 'min: %.6f ' % self.min
info += 'max: %.6f' % self.max
return info
class QModule(nn.Module):
def __init__(self, qi=True, qo=True, num_bits=8):
super(QModule, self).__init__()
if qi:
self.qi = QParam(num_bits=num_bits)
if qo:
self.qo = QParam(num_bits=num_bits)
def freeze(self):
pass
def quantize_inference(self, x):
raise NotImplementedError('quantize_inference should be implemented.')
class QConv2d(QModule):
def __init__(self, conv_module, qi=True, qo=True, num_bits=8):
super(QConv2d, self).__init__(qi=qi, qo=qo, num_bits=num_bits)
self.num_bits = num_bits
self.conv_module = conv_module
self.qw = QParam(num_bits=num_bits)
self.register_buffer('M', torch.tensor([], requires_grad=False)) # 将M注册为buffer
def freeze(self, qi=None, qo=None):
if hasattr(self, 'qi') and qi is not None:
raise ValueError('qi has been provided in init function.')
if not hasattr(self, 'qi') and qi is None:
raise ValueError('qi is not existed, should be provided.')
if hasattr(self, 'qo') and qo is not None:
raise ValueError('qo has been provided in init function.')
if not hasattr(self, 'qo') and qo is None:
raise ValueError('qo is not existed, should be provided.')
if qi is not None:
self.qi = qi
if qo is not None:
self.qo = qo
self.M.data = (self.qw.scale * self.qi.scale / self.qo.scale).data
self.conv_module.weight.data = self.qw.quantize_tensor(self.conv_module.weight.data)
self.conv_module.weight.data = self.conv_module.weight.data - self.qw.zero_point
self.conv_module.bias.data = quantize_tensor(self.conv_module.bias.data, scale=self.qi.scale * self.qw.scale,
zero_point=0, num_bits=32, signed=True)
def forward(self, x):
if hasattr(self, 'qi'):
self.qi.update(x)
x = FakeQuantize.apply(x, self.qi)
self.qw.update(self.conv_module.weight.data)
x = F.conv2d(x, FakeQuantize.apply(self.conv_module.weight, self.qw), self.conv_module.bias,
stride=self.conv_module.stride,
padding=self.conv_module.padding, dilation=self.conv_module.dilation,
groups=self.conv_module.groups)
if hasattr(self, 'qo'):
self.qo.update(x)
x = FakeQuantize.apply(x, self.qo)
return x
def quantize_inference(self, x):
x = x - self.qi.zero_point
x = self.conv_module(x)
x = self.M * x
x.round_()
x = x + self.qo.zero_point
x.clamp_(0., 2.**self.num_bits-1.).round_()
return x
class QLinear(QModule):
def __init__(self, fc_module, qi=True, qo=True, num_bits=8):
super(QLinear, self).__init__(qi=qi, qo=qo, num_bits=num_bits)
self.num_bits = num_bits
self.fc_module = fc_module
self.qw = QParam(num_bits=num_bits)
self.register_buffer('M', torch.tensor([], requires_grad=False)) # 将M注册为buffer
def freeze(self, qi=None, qo=None):
if hasattr(self, 'qi') and qi is not None:
raise ValueError('qi has been provided in init function.')
if not hasattr(self, 'qi') and qi is None:
raise ValueError('qi is not existed, should be provided.')
if hasattr(self, 'qo') and qo is not None:
raise ValueError('qo has been provided in init function.')
if not hasattr(self, 'qo') and qo is None:
raise ValueError('qo is not existed, should be provided.')
if qi is not None:
self.qi = qi
if qo is not None:
self.qo = qo
self.M.data = (self.qw.scale * self.qi.scale / self.qo.scale).data
self.fc_module.weight.data = self.qw.quantize_tensor(self.fc_module.weight.data)
self.fc_module.weight.data = self.fc_module.weight.data - self.qw.zero_point
self.fc_module.bias.data = quantize_tensor(self.fc_module.bias.data, scale=self.qi.scale * self.qw.scale,
zero_point=0, num_bits=32, signed=True)
def forward(self, x):
if hasattr(self, 'qi'):
self.qi.update(x)
x = FakeQuantize.apply(x, self.qi)
self.qw.update(self.fc_module.weight.data)
x = F.linear(x, FakeQuantize.apply(self.fc_module.weight, self.qw), self.fc_module.bias)
if hasattr(self, 'qo'):
self.qo.update(x)
x = FakeQuantize.apply(x, self.qo)
return x
def quantize_inference(self, x):
x = x - self.qi.zero_point
x = self.fc_module(x)
x = self.M * x
x.round_()
x = x + self.qo.zero_point
x.clamp_(0., 2.**self.num_bits-1.).round_()
return x
class QReLU(QModule):
def __init__(self, qi=False, num_bits=None):
super(QReLU, self).__init__(qi=qi, num_bits=num_bits)
def freeze(self, qi=None):
if hasattr(self, 'qi') and qi is not None:
raise ValueError('qi has been provided in init function.')
if not hasattr(self, 'qi') and qi is None:
raise ValueError('qi is not existed, should be provided.')
if qi is not None:
self.qi = qi
def forward(self, x):
if hasattr(self, 'qi'):
self.qi.update(x)
x = FakeQuantize.apply(x, self.qi)
x = F.relu(x)
return x
def quantize_inference(self, x):
x = x.clone()
x[x < self.qi.zero_point] = self.qi.zero_point
return x
class QMaxPooling2d(QModule):
def __init__(self, kernel_size=3, stride=1, padding=0, qi=False, num_bits=None):
super(QMaxPooling2d, self).__init__(qi=qi, num_bits=num_bits)
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
def freeze(self, qi=None):
if hasattr(self, 'qi') and qi is not None:
raise ValueError('qi has been provided in init function.')
if not hasattr(self, 'qi') and qi is None:
raise ValueError('qi is not existed, should be provided.')
if qi is not None:
self.qi = qi
def forward(self, x):
if hasattr(self, 'qi'):
self.qi.update(x)
x = FakeQuantize.apply(x, self.qi)
x = F.max_pool2d(x, self.kernel_size, self.stride, self.padding)
return x
def quantize_inference(self, x):
return F.max_pool2d(x, self.kernel_size, self.stride, self.padding)
class QConvBNReLU(QModule):
def __init__(self, conv_module, bn_module, qi=True, qo=True, num_bits=8):
super(QConvBNReLU, self).__init__(qi=qi, qo=qo, num_bits=num_bits)
self.num_bits = num_bits
self.conv_module = conv_module
self.bn_module = bn_module
self.qw = QParam(num_bits=num_bits)
self.qb = QParam(num_bits=32)
self.register_buffer('M', torch.tensor([], requires_grad=False)) # 将M注册为buffer
def fold_bn(self, mean, std):
if self.bn_module.affine:
gamma_ = self.bn_module.weight / std
weight = self.conv_module.weight * gamma_.view(self.conv_module.out_channels, 1, 1, 1)
if self.conv_module.bias is not None:
bias = gamma_ * self.conv_module.bias - gamma_ * mean + self.bn_module.bias
else:
bias = self.bn_module.bias - gamma_ * mean
else:
gamma_ = 1 / std
weight = self.conv_module.weight * gamma_
if self.conv_module.bias is not None:
bias = gamma_ * self.conv_module.bias - gamma_ * mean
else:
bias = -gamma_ * mean
return weight, bias
def forward(self, x):
if hasattr(self, 'qi'):
self.qi.update(x)
x = FakeQuantize.apply(x, self.qi)
if self.training:
y = F.conv2d(x, self.conv_module.weight, self.conv_module.bias,
stride=self.conv_module.stride,
padding=self.conv_module.padding,
dilation=self.conv_module.dilation,
groups=self.conv_module.groups)
y = y.permute(1, 0, 2, 3) # NCHW -> CNHW
y = y.contiguous().view(self.conv_module.out_channels, -1) # CNHW -> C,NHW
# mean = y.mean(1)
# var = y.var(1)
mean = y.mean(1).detach()
var = y.var(1).detach()
self.bn_module.running_mean = \
self.bn_module.momentum * self.bn_module.running_mean + \
(1 - self.bn_module.momentum) * mean
self.bn_module.running_var = \
self.bn_module.momentum * self.bn_module.running_var + \
(1 - self.bn_module.momentum) * var
else:
mean = Variable(self.bn_module.running_mean)
var = Variable(self.bn_module.running_var)
std = torch.sqrt(var + self.bn_module.eps)
weight, bias = self.fold_bn(mean, std)
self.qw.update(weight.data)
x = F.conv2d(x, FakeQuantize.apply(weight, self.qw), bias,
stride=self.conv_module.stride,
padding=self.conv_module.padding, dilation=self.conv_module.dilation,
groups=self.conv_module.groups)
x = F.relu(x)
if hasattr(self, 'qo'):
self.qo.update(x)
x = FakeQuantize.apply(x, self.qo)
return x
def freeze(self, qi=None, qo=None):
if hasattr(self, 'qi') and qi is not None:
raise ValueError('qi has been provided in init function.')
if not hasattr(self, 'qi') and qi is None:
raise ValueError('qi is not existed, should be provided.')
if hasattr(self, 'qo') and qo is not None:
raise ValueError('qo has been provided in init function.')
if not hasattr(self, 'qo') and qo is None:
raise ValueError('qo is not existed, should be provided.')
if qi is not None:
self.qi = qi
if qo is not None:
self.qo = qo
self.M.data = (self.qw.scale * self.qi.scale / self.qo.scale).data
std = torch.sqrt(self.bn_module.running_var + self.bn_module.eps)
weight, bias = self.fold_bn(self.bn_module.running_mean, std)
self.conv_module.weight.data = self.qw.quantize_tensor(weight.data)
self.conv_module.weight.data = self.conv_module.weight.data - self.qw.zero_point
self.conv_module.bias.data = quantize_tensor(bias, scale=self.qi.scale * self.qw.scale,
zero_point=0, num_bits=32, signed=True)
def quantize_inference(self, x):
x = x - self.qi.zero_point
x = self.conv_module(x)
x = self.M * x
x.round_()
x = x + self.qo.zero_point
x.clamp_(0., 2.**self.num_bits-1.).round_()
return x