-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_features.py
59 lines (52 loc) · 2.51 KB
/
extract_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import numpy as np
from scipy.ndimage import gaussian_filter, laplace
fv = np.mgrid[-9:10,-9:10,0:1].reshape(3, 19*19).transpose()
log_fv = np.mgrid[-27:28:3,-27:28:3,0:1].reshape(3, 19 * 19).transpose()
blur_fv = np.mgrid[-72:73:8, -72:73:8, 0:1].reshape(3, 19 * 19).transpose()
n_features = fv.shape[0] + blur_fv.shape[0] + log_fv.shape[0]
def blur_image(img):
'''Return the blurred image that's used when sampling'''
blur = np.zeros(list(img.shape)+[2], img.dtype)
for z in range(img.shape[2]):
blur[:,:,z, 0] = laplace(gaussian_filter(img[:,:,z], 3))
blur[:,:,z, 1] = gaussian_filter(img[:,:,z], 5)
return blur
def extract_features(img, blur, indices):
'''Extract the feature vector from a portion of the image
img - a 3-d ndarray'ish object
blur_img - image blurred with blur_image
indices - an Nx3 array of indices of the pixels to have their values
sampled.
oob_value - value that signals out-of-bounds, default is 65535 which
is far enough from the value range that it should be a class-
signifier of an OOB pixel rather than something that can
be part of a linear combination.
returns an NxM matrix of features where M is the width of the feature vector
'''
log_img = blur[:,:,:,0]
blur_img = blur[:,:,:,1]
sampler = np.ones((indices.shape[0], n_features), img.dtype)
for xfv, ximg, offset, end in (
(fv, img, 0, fv.shape[0]),
(log_fv, log_img, fv.shape[0], fv.shape[0] + log_fv.shape[0]),
(blur_fv, blur_img, fv.shape[0] + log_fv.shape[0], n_features)):
x = (indices[:, 0, np.newaxis] + xfv[np.newaxis, :, 0])
y = (indices[:, 1, np.newaxis] + xfv[np.newaxis, :, 1])
z = (indices[:, 2, np.newaxis] + xfv[np.newaxis, :, 2])
#
# Reflect out-of-bounds values back into the image
#
x[x < 0] *= -1
x[x >= ximg.shape[0]] = ximg.shape[0] * 2 - x[x >= ximg.shape[0]] - 1
y[y < 0] *= -1
y[y >= ximg.shape[1]] = ximg.shape[1] * 2 - y[y >= ximg.shape[1]] - 1
z[z < 0] *= -1
z[z >= ximg.shape[2]] = ximg.shape[2] * 2 - z[z >= ximg.shape[2]] - 1
sampler[:, offset:end] = ximg[x, y, z]
return sampler
def extract_eigenfeatures(img, blur_img, components, indices):
from eigentexture import normalize
features = extract_features(img, blur_img, indices)
features = normalize(features)
efeatures = np.dot(features, components.transpose())
return efeatures