-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
178 lines (137 loc) · 4.84 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import pickle
import pandas as pd
import streamlit as st
import requests
import bz2
import pickle
import _pickle as cPickle
def fetch_poster(mv_id):
response = requests.get('https://api.themoviedb.org/3/movie/{}?api_key=c2665c794d9e9995cae79259213f9852&language=en-US'.format(mv_id))
data = response.json()
return "https://image.tmdb.org/t/p/w500" + data['poster_path']
def recommend(movie):
movie_index = movies[movies['title'] == movie].index[0]
distances = similarity[movie_index]
movies_list=sorted(list(enumerate(distances)),reverse=True,key=lambda x:x[1])[1:11]
recommended_movies = []
recommended_movies_posters = []
for i in movies_list:
mv_id = movies.iloc[i[0]].id
recommended_movies.append(movies.iloc[i[0]].title)
recommended_movies_posters.append(fetch_poster(mv_id))
return recommended_movies,recommended_movies_posters
def recommend_for(userId, title):
index_of_movies = pd.Series(movies.index, index=movies['title']).drop_duplicates()
index_map = movie_id.set_index('id')
index = index_of_movies[title]
tmdbId = movie_id.loc[title]['id']
# content based
sim_scores = list(enumerate(similarity[int(index)]))
sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)
sim_scores = sim_scores[1:100]
movie_indices = [i[0] for i in sim_scores]
mv = movies.iloc[movie_indices][['title', 'vote_count', 'vote_average', 'id']]
mv = mv[mv['id'].isin(movie_id['id'])]
print(mv)
# CF
mv['est'] = mv['id'].apply(lambda x: svd.predict(userId, index_map.loc[x]['movieId']).est)
mv = mv.sort_values('est', ascending=False)
return mv.head(10)
def popular():
pop = movies.sort_values('popularity', ascending=False)
return pop[['title','popularity']].head(10)
svd = pickle.load(open('svd.pkl','rb'))
movie_id = pickle.load(open('moviesid.pkl','rb'))
#movie_dict = pickle.load(open('movies_dict.pkl','rb'))
#movies = pd.DataFrame(movie_dict)
def decompress_pickle(file):
data = bz2.BZ2File(file, 'rb')
data = cPickle.load(data)
return data
#similarity = pickle.load(open('similarity.pkl','rb'))
similarity = decompress_pickle('Similarity.pbz2')
#similarity = pickle.load(open('similarity.pkl','rb'))
movie_dict =decompress_pickle('movies_dict.pbz2')
movies = pd.DataFrame(movie_dict)
st.title('Movie Recommender')
userId = st.number_input('User Id', min_value=None, max_value=None, value=0, step=1)
selected_movie_name = st.selectbox(
'Search',
movies['title'].values)
if st.button('Recommend'):
popularmvs = popular()
ppmv = popularmvs.title
pmv = ppmv.to_dict()
pms = []
posterset = []
for pm in pmv.values():
mv_id = movie_id.loc[pm]['id']
pms.append(pm)
posterset.append(fetch_poster(mv_id))
names2 = pms
posters2 = posterset
st.header('POPULAR MOVIES')
#for l in pms:
#st.write(l)
col1, col2, col3, col4, col5 = st.columns(5)
y = 0
for clm in st.columns(5):
with clm:
st.text(names2[y])
st.image(posters2[y])
y = y + 1
for clm in st.columns(5):
with clm:
st.text(names2[y])
st.image(posters2[y])
y = y + 1
names,posters= recommend(selected_movie_name)
st.header('CONTENT BASED')
col1, col2, col3, col4, col5= st.columns(5)
v=0
for c in st.columns(5):
with c:
st.text(names[v])
st.image(posters[v])
v=v+1
for c in st.columns(5):
with c:
st.text(names[v])
st.image(posters[v])
v=v+1
#names1= recommend_for(userId,selected_movie_name)
recos = recommend_for(userId,selected_movie_name)
#recs = recos['title'].todict()
recs = recos.title
recomdns = recs.to_dict()
cfrecs = []
posters = []
for cfr in recomdns.values():
cfrecs.append(cfr)
mv_id = movie_id.loc[cfr]['id']
posters.append(fetch_poster(mv_id))
names1 = cfrecs
posters1 = posters
var = len(posters1)
st.header('COLLABORATIVE FILTERING')
#for k in cfrecs:
# st.write(k)
# st.write(cfrecs)
# st.write(recomdns.values())
#st.write(recos.values)
#for j in recos:
#st.write(j)
col1, col2, col3, col4, col5 = st.columns(5)
z = 0
for co in st.columns(5):
with co:
st.text(names1[z])
st.image(posters1[z])
z = z + 1
for co in st.columns(5):
with co:
st.text(names1[z])
st.image(posters1[z])
z = z + 1
if (z == var):
break