-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
53 lines (44 loc) · 1.59 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# -*- coding: utf-8 -*-
"""
Created on Mon Mar 2 02:46:21 2020
@author: Laveshsp
"""
import numpy as np
from flask import Flask,render_template,request
import pickle
app = Flask(__name__)
model = pickle.load(open('model.pkl', 'rb'))
@app.route('/')
def home():
return render_template('index.html')
@app.route('/predict')
def predict():
'''
For rendering results on HTML GUI
'''
#int_features = [int(x) for x in request.form.values()]
#final_features = [np.array(int_features)]
#prediction = model.predict(final_features)
#output = round(prediction[0], 2)
return render_template('predict.html')
#return render_template('prediction.html', prediction_text='Employee Salary should be $ {}'.format(output))
@app.route('/predict/predict_result',methods=['POST'])
def predict_result():
# '''
# For direct API calls trought request
# '''
int_features = [float(x) for x in request.form.values()]
print(int_features)
final_features = [np.array(int_features)]
prediction = model.predict(final_features)
output = prediction
#data = request.get_json(force=True)
#prediction = model.predict([np.array(list(data.values()))])
if(output[0]==0):
return render_template('predict.html', prediction_text='The patient will survive for a minimum span of one-year Post Thoracic Surgery '.format(output))
else:
return render_template('predict.html', prediction_text='The patient will not survive for a span of one-year Post Thoracic Surgery '.format(output))
# output = prediction[0]
# return jsonify(output)
if __name__ == "__main__":
app.run(debug=True)