forked from tidyverse/datascience-box
-
Notifications
You must be signed in to change notification settings - Fork 0
/
u4-d10-quantify-uncertainty.html
536 lines (389 loc) · 14.8 KB
/
u4-d10-quantify-uncertainty.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
<!DOCTYPE html>
<html lang="" xml:lang="">
<head>
<title>Quantifying uncertainty</title>
<meta charset="utf-8" />
<script src="libs/header-attrs/header-attrs.js"></script>
<link href="libs/font-awesome/css/all.min.css" rel="stylesheet" />
<link href="libs/font-awesome/css/v4-shims.min.css" rel="stylesheet" />
<link href="libs/panelset/panelset.css" rel="stylesheet" />
<script src="libs/panelset/panelset.js"></script>
<link rel="stylesheet" href="../xaringan-themer.css" type="text/css" />
<link rel="stylesheet" href="../slides.css" type="text/css" />
</head>
<body>
<textarea id="source">
class: center, middle, inverse, title-slide
.title[
# Quantifying uncertainty
]
.subtitle[
## <br><br> College of the Atlantic
]
---
class: middle
# Recap and motivation
---
## Data
- Family income and gift aid data from a random sample of fifty students in the freshman class of Elmhurst College in Illinois, USA
- Gift aid is financial aid that does not need to be paid back, as opposed to a loan
<img src="u4-d10-quantify-uncertainty_files/figure-html/unnamed-chunk-2-1.png" width="50%" style="display: block; margin: auto;" />
.footnote[
.small[
The data come from the openintro package: [`elmhurst`](http://openintrostat.github.io/openintro/reference/elmhurst.html).
]
]
---
## Linear model
.pull-left[
.small[
```r
linear_reg() %>%
set_engine("lm") %>%
fit(gift_aid ~ family_income, data = elmhurst) %>%
tidy()
```
```
## # A tibble: 2 × 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 24.3 1.29 18.8 8.28e-24
## 2 family_income -0.0431 0.0108 -3.98 2.29e- 4
```
]
]
.pull-right[
<img src="u4-d10-quantify-uncertainty_files/figure-html/unnamed-chunk-4-1.png" width="100%" style="display: block; margin: auto;" />
]
---
## Interpreting the slope
.pull-left-wide[
```
## # A tibble: 2 × 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 24.3 1.29 18.8 8.28e-24
## 2 family_income -0.0431 0.0108 -3.98 2.29e- 4
```
]
.pull-right-narrow[
<img src="u4-d10-quantify-uncertainty_files/figure-html/unnamed-chunk-5-1.png" width="100%" style="display: block; margin: auto;" />
]
--
For each additional $1,000 of family income, we would expect students to receive a net difference of 1,000 * (-0.0431) = -$43.10 in aid on average, i.e. $43.10 less in gift aid, on average.
---
class: middle
.hand[
.light-blue[
exactly $43.10 for all students at this school?!
]
]
---
class: middle
# Inference
---
## Statistical inference
... is the process of using sample data to make conclusions about the underlying population the sample came from
<img src="img/photo-1571942676516-bcab84649e44.png" width="60%" style="display: block; margin: auto;" />
---
## Estimation
So far we have done lots of estimation (mean, median, slope, etc.), i.e.
- used data from samples to calculate sample statistics
- which can then be used as estimates for population parameters
---
.question[
If you want to catch a fish, do you prefer a spear or a net?
]
<br>
.pull-left[
<img src="img/spear.png" width="80%" style="display: block; margin: auto;" />
]
.pull-right[
<img src="img/net.png" width="80%" style="display: block; margin: auto;" />
]
---
.question[
If you want to estimate a population parameter, do you prefer to report a range of values the parameter might be in, or a single value?
]
<br>
--
- If we report a point estimate, we probably won’t hit the exact population parameter
- If we report a range of plausible values we have a good shot at capturing the parameter
---
class: middle
# Confidence intervals
---
## Confidence intervals
A plausible range of values for the population parameter is a **confidence interval**.
--
- In order to construct a confidence interval we need to quantify the variability of our sample statistic
--
- For example, if we want to construct a confidence interval for a population slope, we need to come up with a plausible range of values around our observed sample slope
--
- This range will depend on how precise and how accurate our sample mean is as an estimate of the population mean
--
- Quantifying this requires a measurement of how much we would expect the sample population to vary from sample to sample
---
.question[
Suppose we split the class in half down the middle of the classroom and ask each student their heights. Then, we calculate the mean height of students on each side of the classroom. Would you expect these two means to be exactly equal, close but not equal, or wildly different?
]
--
<br>
.question[
Suppose you randomly sample 50 students and 5 of them are left handed. If you were to take another random sample of 50 students, how many would you expect to be left handed? Would you be surprised if only 3 of them were left handed? Would you be surprised if 40 of them were left handed?
]
---
## Quantifying the variability of slopes
We can quantify the variability of sample statistics using
- simulation: via bootstrapping (now)
or
- theory: via Central Limit Theorem (future stat courses!)
```
## # A tibble: 2 × 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 24.3 1.29 18.8 8.28e-24
## 2 family_income -0.0431 0.0108 -3.98 2.29e- 4
```
---
class: middle
# Bootstrapping
---
## Bootstrapping
.pull-left-wide[
- _"pulling oneself up by one’s bootstraps"_: accomplishing an impossible task without any outside help
- **Impossible task:** estimating a population parameter using data from only the given sample
- **Note:** Notion of saying something about a population parameter using only information from an observed sample is the crux of statistical inference
]
.pull-right-narrow[
.huge[
🥾
]
]
---
## Observed sample
<img src="u4-d10-quantify-uncertainty_files/figure-html/unnamed-chunk-11-1.png" width="60%" style="display: block; margin: auto;" />
---
## Bootstrapping scheme
1. Take a bootstrap sample - a random sample taken **with replacement** from the original sample, of the same size as the original sample
--
2. Calculate the bootstrap statistic - a statistic such as mean, median, proportion, slope, etc. computed on the bootstrap samples
--
3. Repeat steps (1) and (2) many times to create a bootstrap distribution - a distribution of bootstrap statistics
--
4. Calculate the bounds of the XX% confidence interval as the middle XX% of the bootstrap distribution
---
## Bootstrap sample 1
```r
elmhurtst_boot_1 <- elmhurst %>%
slice_sample(n = 50, replace = TRUE)
```
<img src="u4-d10-quantify-uncertainty_files/figure-html/unnamed-chunk-13-1.png" width="60%" style="display: block; margin: auto;" />
---
## Bootstrap sample 2
```r
elmhurtst_boot_2 <- elmhurst %>%
slice_sample(n = 50, replace = TRUE)
```
<img src="u4-d10-quantify-uncertainty_files/figure-html/unnamed-chunk-15-1.png" width="60%" style="display: block; margin: auto;" />
---
## Bootstrap sample 3
```r
elmhurtst_boot_3 <- elmhurst %>%
slice_sample(n = 50, replace = TRUE)
```
<img src="u4-d10-quantify-uncertainty_files/figure-html/unnamed-chunk-17-1.png" width="60%" style="display: block; margin: auto;" />
---
## Bootstrap sample 4
```r
elmhurtst_boot_4 <- elmhurst %>%
slice_sample(n = 50, replace = TRUE)
```
<img src="u4-d10-quantify-uncertainty_files/figure-html/unnamed-chunk-19-1.png" width="60%" style="display: block; margin: auto;" />
---
## Bootstrap samples 1 - 4
<img src="u4-d10-quantify-uncertainty_files/figure-html/unnamed-chunk-20-1.png" width="60%" style="display: block; margin: auto;" />
---
class: middle
.hand[
.light-blue[
we could keep going...
]
]
---
## Many many samples...
<img src="u4-d10-quantify-uncertainty_files/figure-html/unnamed-chunk-21-1.png" width="60%" style="display: block; margin: auto;" />
---
## Slopes of bootstrap samples
<img src="u4-d10-quantify-uncertainty_files/figure-html/unnamed-chunk-22-1.png" width="60%" style="display: block; margin: auto;" />
---
## 95% confidence interval
<img src="u4-d10-quantify-uncertainty_files/figure-html/unnamed-chunk-23-1.png" width="60%" style="display: block; margin: auto;" />
---
## Interpreting the slope, take two
```
## # A tibble: 2 × 6
## term .lower .estimate .upper .alpha .method
## <chr> <dbl> <dbl> <dbl> <dbl> <chr>
## 1 (Intercept) 21.8 24.4 26.8 0.05 percentile
## 2 family_income -0.0695 -0.0445 -0.0219 0.05 percentile
```
**We are 95% confident that** for each additional $1,000 of family income, we would expect students to receive $69.50 to $21.90 less in gift aid, on average.
---
## Code
```r
# set a seed
set.seed(1234)
# take 1000 bootstrap samples
elmhurst_boot <- bootstraps(elmhurst, times = 1000)
# for each sample
# fit a model and save output in model column
# tidy model output and save in coef_info column
elmhurst_models <- elmhurst_boot %>%
mutate(
model = map(splits, ~ lm(gift_aid ~ family_income, data = .)),
coef_info = map(model, tidy)
)
# unnest coef_info (for intercept and slope)
elmhurst_coefs <- elmhurst_models %>%
unnest(coef_info)
# calculate 95% (default) percentile interval
int_pctl(elmhurst_models, coef_info)
```
---
## Acknowledgements
* This course builds on the materials from [Data Science in a Box](https://datasciencebox.org/) developed by Mine Çetinkaya-Rundel and are adapted under the [Creative Commons Attribution Share Alike 4.0 International](https://github.com/rstudio-education/datascience-box/blob/master/LICENSE.md)
</textarea>
<style data-target="print-only">@media screen {.remark-slide-container{display:block;}.remark-slide-scaler{box-shadow:none;}}</style>
<script src="https://remarkjs.com/downloads/remark-latest.min.js"></script>
<script>var slideshow = remark.create({
"ratio": "16:9",
"highlightLines": true,
"highlightStyle": "solarized-light",
"countIncrementalSlides": false
});
if (window.HTMLWidgets) slideshow.on('afterShowSlide', function (slide) {
window.dispatchEvent(new Event('resize'));
});
(function(d) {
var s = d.createElement("style"), r = d.querySelector(".remark-slide-scaler");
if (!r) return;
s.type = "text/css"; s.innerHTML = "@page {size: " + r.style.width + " " + r.style.height +"; }";
d.head.appendChild(s);
})(document);
(function(d) {
var el = d.getElementsByClassName("remark-slides-area");
if (!el) return;
var slide, slides = slideshow.getSlides(), els = el[0].children;
for (var i = 1; i < slides.length; i++) {
slide = slides[i];
if (slide.properties.continued === "true" || slide.properties.count === "false") {
els[i - 1].className += ' has-continuation';
}
}
var s = d.createElement("style");
s.type = "text/css"; s.innerHTML = "@media print { .has-continuation { display: none; } }";
d.head.appendChild(s);
})(document);
// delete the temporary CSS (for displaying all slides initially) when the user
// starts to view slides
(function() {
var deleted = false;
slideshow.on('beforeShowSlide', function(slide) {
if (deleted) return;
var sheets = document.styleSheets, node;
for (var i = 0; i < sheets.length; i++) {
node = sheets[i].ownerNode;
if (node.dataset["target"] !== "print-only") continue;
node.parentNode.removeChild(node);
}
deleted = true;
});
})();
// add `data-at-shortcutkeys` attribute to <body> to resolve conflicts with JAWS
// screen reader (see PR #262)
(function(d) {
let res = {};
d.querySelectorAll('.remark-help-content table tr').forEach(tr => {
const t = tr.querySelector('td:nth-child(2)').innerText;
tr.querySelectorAll('td:first-child .key').forEach(key => {
const k = key.innerText;
if (/^[a-z]$/.test(k)) res[k] = t; // must be a single letter (key)
});
});
d.body.setAttribute('data-at-shortcutkeys', JSON.stringify(res));
})(document);
(function() {
"use strict"
// Replace <script> tags in slides area to make them executable
var scripts = document.querySelectorAll(
'.remark-slides-area .remark-slide-container script'
);
if (!scripts.length) return;
for (var i = 0; i < scripts.length; i++) {
var s = document.createElement('script');
var code = document.createTextNode(scripts[i].textContent);
s.appendChild(code);
var scriptAttrs = scripts[i].attributes;
for (var j = 0; j < scriptAttrs.length; j++) {
s.setAttribute(scriptAttrs[j].name, scriptAttrs[j].value);
}
scripts[i].parentElement.replaceChild(s, scripts[i]);
}
})();
(function() {
var links = document.getElementsByTagName('a');
for (var i = 0; i < links.length; i++) {
if (/^(https?:)?\/\//.test(links[i].getAttribute('href'))) {
links[i].target = '_blank';
}
}
})();
// adds .remark-code-has-line-highlighted class to <pre> parent elements
// of code chunks containing highlighted lines with class .remark-code-line-highlighted
(function(d) {
const hlines = d.querySelectorAll('.remark-code-line-highlighted');
const preParents = [];
const findPreParent = function(line, p = 0) {
if (p > 1) return null; // traverse up no further than grandparent
const el = line.parentElement;
return el.tagName === "PRE" ? el : findPreParent(el, ++p);
};
for (let line of hlines) {
let pre = findPreParent(line);
if (pre && !preParents.includes(pre)) preParents.push(pre);
}
preParents.forEach(p => p.classList.add("remark-code-has-line-highlighted"));
})(document);</script>
<script>
slideshow._releaseMath = function(el) {
var i, text, code, codes = el.getElementsByTagName('code');
for (i = 0; i < codes.length;) {
code = codes[i];
if (code.parentNode.tagName !== 'PRE' && code.childElementCount === 0) {
text = code.textContent;
if (/^\\\((.|\s)+\\\)$/.test(text) || /^\\\[(.|\s)+\\\]$/.test(text) ||
/^\$\$(.|\s)+\$\$$/.test(text) ||
/^\\begin\{([^}]+)\}(.|\s)+\\end\{[^}]+\}$/.test(text)) {
code.outerHTML = code.innerHTML; // remove <code></code>
continue;
}
}
i++;
}
};
slideshow._releaseMath(document);
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement('script');
script.type = 'text/javascript';
script.src = 'https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-MML-AM_CHTML';
if (location.protocol !== 'file:' && /^https?:/.test(script.src))
script.src = script.src.replace(/^https?:/, '');
document.getElementsByTagName('head')[0].appendChild(script);
})();
</script>
</body>
</html>