forked from tidyverse/datascience-box
-
Notifications
You must be signed in to change notification settings - Fork 0
/
u4-d08-feature-engineering.html
762 lines (613 loc) · 19.4 KB
/
u4-d08-feature-engineering.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
<!DOCTYPE html>
<html lang="" xml:lang="">
<head>
<title>Feature engineering</title>
<meta charset="utf-8" />
<script src="libs/header-attrs/header-attrs.js"></script>
<link href="libs/font-awesome/css/all.min.css" rel="stylesheet" />
<link href="libs/font-awesome/css/v4-shims.min.css" rel="stylesheet" />
<link href="libs/panelset/panelset.css" rel="stylesheet" />
<script src="libs/panelset/panelset.js"></script>
<link rel="stylesheet" href="../xaringan-themer.css" type="text/css" />
<link rel="stylesheet" href="../slides.css" type="text/css" />
</head>
<body>
<textarea id="source">
class: center, middle, inverse, title-slide
# Feature engineering
## <br><br> College of the Atlantic
---
class: middle
# Feature engineering
---
## Feature engineering
- We prefer simple models when possible, but **parsimony** does not mean sacrificing accuracy (or predictive performance) in the interest of simplicity
--
- Variables that go into the model and how they are represented are just as critical to success of the model
--
- **Feature engineering** allows us to get creative with our predictors in an effort to make them more useful for our model (to increase its predictive performance)
---
## Same training and testing sets as before
```r
# Fix random numbers by setting the seed
# Enables analysis to be reproducible when random numbers are used
set.seed(1116)
# Put 80% of the data into the training set
email_split <- initial_split(email, prop = 0.80)
# Create data frames for the two sets:
train_data <- training(email_split)
test_data <- testing(email_split)
```
---
## A simple approach: `mutate()`
```r
train_data %>%
mutate(
date = lubridate::date(time),
dow = lubridate::wday(time),
month = lubridate::month(time)
) %>%
select(time, date, dow, month) %>%
sample_n(size = 5) # shuffle to show a variety
```
```
## # A tibble: 5 x 4
## time date dow month
## <dttm> <date> <dbl> <dbl>
## 1 2012-03-15 14:51:35 2012-03-15 5 3
## 2 2012-03-03 09:24:02 2012-03-03 7 3
## 3 2012-01-18 11:55:23 2012-01-18 4 1
## 4 2012-02-24 23:08:59 2012-02-24 6 2
## 5 2012-01-11 08:18:51 2012-01-11 4 1
```
---
## Modeling workflow, revisited
- Create a **recipe** for feature engineering steps to be applied to the training data
--
- Fit the model to the training data after these steps have been applied
--
- Using the model estimates from the training data, predict outcomes for the test data
--
- Evaluate the performance of the model on the test data
---
class: middle
# Building recipes
---
## Initiate a recipe
```r
email_rec <- recipe(
spam ~ ., # formula
data = train_data # data to use for cataloging names and types of variables
)
summary(email_rec)
```
.xsmall[
```
## # A tibble: 21 x 4
## variable type role source
## <chr> <chr> <chr> <chr>
## 1 to_multiple nominal predictor original
## 2 from nominal predictor original
## 3 cc numeric predictor original
## 4 sent_email nominal predictor original
## 5 time date predictor original
## 6 image numeric predictor original
## 7 attach numeric predictor original
## 8 dollar numeric predictor original
## 9 winner nominal predictor original
## 10 inherit numeric predictor original
## 11 viagra numeric predictor original
## 12 password numeric predictor original
## 13 num_char numeric predictor original
## 14 line_breaks numeric predictor original
## 15 format nominal predictor original
## 16 re_subj nominal predictor original
## 17 exclaim_subj numeric predictor original
## 18 urgent_subj nominal predictor original
## 19 exclaim_mess numeric predictor original
## 20 number nominal predictor original
## 21 spam nominal outcome original
```
]
---
## Remove certain variables
```r
email_rec <- email_rec %>%
step_rm(from, sent_email)
```
.small[
```
## Recipe
##
## Inputs:
##
## role #variables
## outcome 1
## predictor 20
##
## Operations:
##
## Variables removed from, sent_email
```
]
---
## Feature engineer date
```r
email_rec <- email_rec %>%
step_date(time, features = c("dow", "month")) %>%
step_rm(time)
```
.small[
```
## Recipe
##
## Inputs:
##
## role #variables
## outcome 1
## predictor 20
##
## Operations:
##
## Variables removed from, sent_email
## Date features from time
## Variables removed time
```
]
---
## Discretize numeric variables
```r
email_rec <- email_rec %>%
step_cut(cc, attach, dollar, breaks = c(0, 1)) %>%
step_cut(inherit, password, breaks = c(0, 1, 5, 10, 20))
```
.small[
```
## Recipe
##
## Inputs:
##
## role #variables
## outcome 1
## predictor 20
##
## Operations:
##
## Variables removed from, sent_email
## Date features from time
## Variables removed time
## Cut numeric for cc, attach, dollar
## Cut numeric for inherit, password
```
]
---
## Create dummy variables
```r
email_rec <- email_rec %>%
step_dummy(all_nominal(), -all_outcomes())
```
.small[
```
## Recipe
##
## Inputs:
##
## role #variables
## outcome 1
## predictor 20
##
## Operations:
##
## Variables removed from, sent_email
## Date features from time
## Variables removed time
## Cut numeric for cc, attach, dollar
## Cut numeric for inherit, password
## Dummy variables from all_nominal(), -all_outcomes()
```
]
---
## Remove zero variance variables
Variables that contain only a single value
```r
email_rec <- email_rec %>%
step_zv(all_predictors())
```
.small[
```
## Recipe
##
## Inputs:
##
## role #variables
## outcome 1
## predictor 20
##
## Operations:
##
## Variables removed from, sent_email
## Date features from time
## Variables removed time
## Cut numeric for cc, attach, dollar
## Cut numeric for inherit, password
## Dummy variables from all_nominal(), -all_outcomes()
## Zero variance filter on all_predictors()
```
]
---
## All in one place
```r
email_rec <- recipe(spam ~ ., data = email) %>%
step_rm(from, sent_email) %>%
step_date(time, features = c("dow", "month")) %>%
step_rm(time) %>%
step_cut(cc, attach, dollar, breaks = c(0, 1)) %>%
step_cut(inherit, password, breaks = c(0, 1, 5, 10, 20)) %>%
step_dummy(all_nominal(), -all_outcomes()) %>%
step_zv(all_predictors())
```
---
class: middle
# Building workflows
---
## Define model
```r
email_mod <- logistic_reg() %>%
set_engine("glm")
email_mod
```
```
## Logistic Regression Model Specification (classification)
##
## Computational engine: glm
```
---
## Define workflow
**Workflows** bring together models and recipes so that they can be easily applied to both the training and test data.
```r
email_wflow <- workflow() %>%
add_model(email_mod) %>%
add_recipe(email_rec)
```
.small[
```
## == Workflow ========================================================================================
## Preprocessor: Recipe
## Model: logistic_reg()
##
## -- Preprocessor ------------------------------------------------------------------------------------
## 7 Recipe Steps
##
## * step_rm()
## * step_date()
## * step_rm()
## * step_cut()
## * step_cut()
## * step_dummy()
## * step_zv()
##
## -- Model -------------------------------------------------------------------------------------------
## Logistic Regression Model Specification (classification)
##
## Computational engine: glm
```
]
---
## Fit model to training data
```r
email_fit <- email_wflow %>%
fit(data = train_data)
```
```
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
```
---
.small[
```r
tidy(email_fit) %>% print(n = 31)
```
```
## # A tibble: 31 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) -0.892 0.249 -3.58 3.37e- 4
## 2 image -1.65 0.934 -1.76 7.77e- 2
## 3 viagra 2.28 182. 0.0125 9.90e- 1
## 4 num_char 0.0470 0.0244 1.93 5.36e- 2
## 5 line_breaks -0.00510 0.00138 -3.69 2.28e- 4
## 6 exclaim_subj -0.204 0.277 -0.736 4.62e- 1
## 7 exclaim_mess 0.00885 0.00186 4.75 1.99e- 6
## 8 to_multiple_X1 -2.60 0.354 -7.35 2.06e-13
## 9 cc_X.1.68. -0.312 0.490 -0.638 5.24e- 1
## 10 attach_X.1.21. 2.05 0.368 5.58 2.45e- 8
## 11 dollar_X.1.64. 0.214 0.217 0.988 3.23e- 1
## 12 winner_yes 2.18 0.428 5.08 3.68e- 7
## 13 inherit_X.1.5. -9.21 765. -0.0120 9.90e- 1
## 14 inherit_X.5.10. 2.51 1.44 1.74 8.12e- 2
## 15 password_X.1.5. -1.71 0.748 -2.28 2.24e- 2
## 16 password_X.5.10. -12.5 475. -0.0263 9.79e- 1
## 17 password_X.10.20. -13.7 814. -0.0168 9.87e- 1
## 18 password_X.20.22. -13.9 1029. -0.0135 9.89e- 1
## 19 format_X1 -0.916 0.159 -5.77 7.79e- 9
## 20 re_subj_X1 -2.90 0.437 -6.65 2.95e-11
## 21 urgent_subj_X1 3.52 1.08 3.25 1.15e- 3
## 22 number_small -0.895 0.167 -5.35 8.75e- 8
## 23 number_big -0.199 0.250 -0.797 4.25e- 1
## 24 time_dow_Mon 0.0441 0.296 0.149 8.82e- 1
## 25 time_dow_Tue 0.371 0.267 1.39 1.64e- 1
## 26 time_dow_Wed -0.133 0.272 -0.488 6.26e- 1
## 27 time_dow_Thu 0.0392 0.277 0.141 8.88e- 1
## 28 time_dow_Fri 0.0488 0.280 0.174 8.62e- 1
## 29 time_dow_Sat 0.253 0.298 0.849 3.96e- 1
## 30 time_month_Feb 0.784 0.180 4.35 1.37e- 5
## 31 time_month_Mar 0.541 0.181 2.99 2.79e- 3
```
]
---
## Make predictions for test data
```r
email_pred <- predict(email_fit, test_data, type = "prob") %>%
bind_cols(test_data)
```
```
## Warning: There are new levels in a factor: NA
```
```r
email_pred
```
```
## # A tibble: 785 x 23
## .pred_0 .pred_1 spam to_multiple from cc sent_email
## <dbl> <dbl> <fct> <fct> <fct> <int> <fct>
## 1 0.995 0.00470 0 1 1 0 1
## 2 0.999 0.00134 0 0 1 1 1
## 3 0.967 0.0328 0 0 1 0 0
## 4 0.999 0.000776 0 0 1 1 0
## 5 0.994 0.00642 0 0 1 4 0
## 6 0.860 0.140 0 0 1 0 0
## # ... with 779 more rows, and 16 more variables: time <dttm>,
## # image <dbl>, attach <dbl>, dollar <dbl>, winner <fct>,
## # inherit <dbl>, viagra <dbl>, password <dbl>, num_char <dbl>,
## # line_breaks <int>, format <fct>, re_subj <fct>,
## # exclaim_subj <dbl>, urgent_subj <fct>, exclaim_mess <dbl>,
## # number <fct>
```
---
## Evaluate the performance
.pull-left[
```r
email_pred %>%
roc_curve(
truth = spam,
.pred_1,
event_level = "second"
) %>%
autoplot()
```
]
.pull-right[
<img src="u4-d08-feature-engineering_files/figure-html/unnamed-chunk-22-1.png" width="100%" style="display: block; margin: auto;" />
]
---
## Evaluate the performance
.pull-left[
```r
email_pred %>%
roc_auc(
truth = spam,
.pred_1,
event_level = "second"
)
```
```
## # A tibble: 1 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 roc_auc binary 0.857
```
]
.pull-right[
<img src="u4-d08-feature-engineering_files/figure-html/unnamed-chunk-24-1.png" width="100%" style="display: block; margin: auto;" />
]
---
class: middle
# Making decisions
---
## Cutoff probability: 0.5
.panelset[
.panel[.panel-name[Output]
Suppose we decide to label an email as spam if the model predicts the probability of spam to be **more than 0.5**.
| | Email is not spam| Email is spam|
|:-----------------------|-----------------:|-------------:|
|Email labelled not spam | 710| 60|
|Email labelled spam | 6| 8|
|NA | 1| NA|
]
.panel[.panel-name[Code]
```r
cutoff_prob <- 0.5
email_pred %>%
mutate(
spam = if_else(spam == 1, "Email is spam", "Email is not spam"),
spam_pred = if_else(.pred_1 > cutoff_prob, "Email labelled spam", "Email labelled not spam")
) %>%
count(spam_pred, spam) %>%
pivot_wider(names_from = spam, values_from = n) %>%
kable(col.names = c("", "Email is not spam", "Email is spam"))
```
]
]
---
## Cutoff probability: 0.25
.panelset[
.panel[.panel-name[Output]
Suppose we decide to label an email as spam if the model predicts the probability of spam to be **more than 0.25**.
| | Email is not spam| Email is spam|
|:-----------------------|-----------------:|-------------:|
|Email labelled not spam | 665| 34|
|Email labelled spam | 51| 34|
|NA | 1| NA|
]
.panel[.panel-name[Code]
```r
cutoff_prob <- 0.25
email_pred %>%
mutate(
spam = if_else(spam == 1, "Email is spam", "Email is not spam"),
spam_pred = if_else(.pred_1 > cutoff_prob, "Email labelled spam", "Email labelled not spam")
) %>%
count(spam_pred, spam) %>%
pivot_wider(names_from = spam, values_from = n) %>%
kable(col.names = c("", "Email is not spam", "Email is spam"))
```
]
]
---
## Cutoff probability: 0.75
.panelset[
.panel[.panel-name[Output]
Suppose we decide to label an email as spam if the model predicts the probability of spam to be **more than 0.75**.
| | Email is not spam| Email is spam|
|:-----------------------|-----------------:|-------------:|
|Email labelled not spam | 714| 65|
|Email labelled spam | 2| 3|
|NA | 1| NA|
]
.panel[.panel-name[Code]
```r
cutoff_prob <- 0.75
email_pred %>%
mutate(
spam = if_else(spam == 1, "Email is spam", "Email is not spam"),
spam_pred = if_else(.pred_1 > cutoff_prob, "Email labelled spam", "Email labelled not spam")
) %>%
count(spam_pred, spam) %>%
pivot_wider(names_from = spam, values_from = n) %>%
kable(col.names = c("", "Email is not spam", "Email is spam"))
```
]
]
---
## Acknowledgements
* This course builds on the materials from [Data Science in a Box](https://datasciencebox.org/) developed by Mine Çetinkaya-Rundel and are adapted under the [Creative Commons Attribution Share Alike 4.0 International](https://github.com/rstudio-education/datascience-box/blob/master/LICENSE.md)
</textarea>
<style data-target="print-only">@media screen {.remark-slide-container{display:block;}.remark-slide-scaler{box-shadow:none;}}</style>
<script src="https://remarkjs.com/downloads/remark-latest.min.js"></script>
<script>var slideshow = remark.create({
"ratio": "16:9",
"highlightLines": true,
"highlightStyle": "solarized-light",
"countIncrementalSlides": false
});
if (window.HTMLWidgets) slideshow.on('afterShowSlide', function (slide) {
window.dispatchEvent(new Event('resize'));
});
(function(d) {
var s = d.createElement("style"), r = d.querySelector(".remark-slide-scaler");
if (!r) return;
s.type = "text/css"; s.innerHTML = "@page {size: " + r.style.width + " " + r.style.height +"; }";
d.head.appendChild(s);
})(document);
(function(d) {
var el = d.getElementsByClassName("remark-slides-area");
if (!el) return;
var slide, slides = slideshow.getSlides(), els = el[0].children;
for (var i = 1; i < slides.length; i++) {
slide = slides[i];
if (slide.properties.continued === "true" || slide.properties.count === "false") {
els[i - 1].className += ' has-continuation';
}
}
var s = d.createElement("style");
s.type = "text/css"; s.innerHTML = "@media print { .has-continuation { display: none; } }";
d.head.appendChild(s);
})(document);
// delete the temporary CSS (for displaying all slides initially) when the user
// starts to view slides
(function() {
var deleted = false;
slideshow.on('beforeShowSlide', function(slide) {
if (deleted) return;
var sheets = document.styleSheets, node;
for (var i = 0; i < sheets.length; i++) {
node = sheets[i].ownerNode;
if (node.dataset["target"] !== "print-only") continue;
node.parentNode.removeChild(node);
}
deleted = true;
});
})();
(function() {
"use strict"
// Replace <script> tags in slides area to make them executable
var scripts = document.querySelectorAll(
'.remark-slides-area .remark-slide-container script'
);
if (!scripts.length) return;
for (var i = 0; i < scripts.length; i++) {
var s = document.createElement('script');
var code = document.createTextNode(scripts[i].textContent);
s.appendChild(code);
var scriptAttrs = scripts[i].attributes;
for (var j = 0; j < scriptAttrs.length; j++) {
s.setAttribute(scriptAttrs[j].name, scriptAttrs[j].value);
}
scripts[i].parentElement.replaceChild(s, scripts[i]);
}
})();
(function() {
var links = document.getElementsByTagName('a');
for (var i = 0; i < links.length; i++) {
if (/^(https?:)?\/\//.test(links[i].getAttribute('href'))) {
links[i].target = '_blank';
}
}
})();
// adds .remark-code-has-line-highlighted class to <pre> parent elements
// of code chunks containing highlighted lines with class .remark-code-line-highlighted
(function(d) {
const hlines = d.querySelectorAll('.remark-code-line-highlighted');
const preParents = [];
const findPreParent = function(line, p = 0) {
if (p > 1) return null; // traverse up no further than grandparent
const el = line.parentElement;
return el.tagName === "PRE" ? el : findPreParent(el, ++p);
};
for (let line of hlines) {
let pre = findPreParent(line);
if (pre && !preParents.includes(pre)) preParents.push(pre);
}
preParents.forEach(p => p.classList.add("remark-code-has-line-highlighted"));
})(document);</script>
<script>
slideshow._releaseMath = function(el) {
var i, text, code, codes = el.getElementsByTagName('code');
for (i = 0; i < codes.length;) {
code = codes[i];
if (code.parentNode.tagName !== 'PRE' && code.childElementCount === 0) {
text = code.textContent;
if (/^\\\((.|\s)+\\\)$/.test(text) || /^\\\[(.|\s)+\\\]$/.test(text) ||
/^\$\$(.|\s)+\$\$$/.test(text) ||
/^\\begin\{([^}]+)\}(.|\s)+\\end\{[^}]+\}$/.test(text)) {
code.outerHTML = code.innerHTML; // remove <code></code>
continue;
}
}
i++;
}
};
slideshow._releaseMath(document);
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement('script');
script.type = 'text/javascript';
script.src = 'https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-MML-AM_CHTML';
if (location.protocol !== 'file:' && /^https?:/.test(script.src))
script.src = script.src.replace(/^https?:/, '');
document.getElementsByTagName('head')[0].appendChild(script);
})();
</script>
</body>
</html>