forked from tidyverse/datascience-box
-
Notifications
You must be signed in to change notification settings - Fork 0
/
u1-d02-toolkit-r.html
630 lines (450 loc) · 17.6 KB
/
u1-d02-toolkit-r.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
<!DOCTYPE html>
<html lang="" xml:lang="">
<head>
<title>Meet the toolkit: programming</title>
<meta charset="utf-8" />
<meta name="author" content="" />
<script src="libs/header-attrs/header-attrs.js"></script>
<link href="libs/font-awesome/css/all.min.css" rel="stylesheet" />
<link href="libs/font-awesome/css/v4-shims.min.css" rel="stylesheet" />
<link href="libs/panelset/panelset.css" rel="stylesheet" />
<script src="libs/panelset/panelset.js"></script>
<link rel="stylesheet" href="../xaringan-themer.css" type="text/css" />
<link rel="stylesheet" href="../slides.css" type="text/css" />
</head>
<body>
<textarea id="source">
class: center, middle, inverse, title-slide
.title[
# Meet the toolkit:<br>programming
]
.subtitle[
## <br><br> College of the Atlantic
]
.author[
###
]
---
## Data science
.pull-left-wide[
- Data science is an exciting discipline that allows you to turn data into understanding, insight, and knowledge.
- We're going to learn to do this in a `tidy` way -- more on that later!
- This is a course on programming for analysis and visualization, with an emphasis on statistical thinking.
]
---
## Course FAQ
.pull-left-wide[
**Q - What data science/programming background does this course assume?**
A - None.
**Q - Is this an intro stat course?**
A - While statistics `\(\ne\)` data science, they are very closely related and have tremendous of overlap. Hence, this course is a great way to get started with statistics. However this course is *not* your typical high school statistics course and there is a greater emphasis on data visualization.
**Q - Will we be doing computing?**
A - Yes.
]
---
## Course Schedule
- .pink[**Tuesday**]: Topic Intro
- .pink[**Wednesday**]: Topic Intro
- .pink[**Friday**]: Lab
- .pink[**Help Sessions**]: CHE 103 TBD
---
# One link to rule them all...
... where you can find everything except your course grades!
[https://coa-dataviz.netlify.app/](https://coa-dataviz.netlify.app/)
Bookmark the link!
???
This link is going to have everything but your course grades. It will link you to the relevant places including lyceum.
The course material will be released on a weekly basis, this is so that you can take a look at the week ahead. There are links to videos, readings and others. I try to keep these links up to date but I may occasionally miss something and I'd love to hear from you if you have trouble.
---
class: middle
# Software
---
<img src="img/excel.png" width="75%" style="display: block; margin: auto auto auto 0;" />
???
Before I did my undergraduate this is what data analysis mostly meant to me. Now this form of data in rows and columns may be familiar to some of you if you have worked with excel and spreadsheets. Now many of us if we are collecting data like to put it into something like this.
So data that comes in a tabular format like this might be familiar to you.
---
<img src="img/r.png" width="50%" style="display: block; margin: auto auto auto 0;" />
???
When I did my undergraduate thesis and started learning R this is what R looked like. I remember thinking of the interface as a black box and I wasn't really sure where the data was contained.
---
<img src="img/rstudio.png" width="73%" style="display: block; margin: auto auto auto 0;" />
???
In this course we are going to be using something a little bit different. We are going to be using Posit to interact with the computing language. If you remember the images from the previous two slides you can see that Posit combines those two components so that you can view the data and also execute code in the console. Posit is the Integrated Development Environment (IDE) that we are going to use in this course.
---
class: middle
# Data science life cycle
---
<img src="img/data-science-cycle/data-science-cycle.001.png" width="90%" style="display: block; margin: auto auto auto 0;" />
???
Let's also talk about the Data Science Life Cycle. This is the diagram from the book R for Data Science that we'll be referring to throughout the course. Note that this isn't the only diagram out there representing the data science life cycle but it is the one that we are using to structure this course.
So how does the data science life cycle begin?
---
<img src="img/data-science-cycle/data-science-cycle.002.png" width="90%" style="display: block; margin: auto auto auto 0;" />
???
Usually you have some data maybe in a spreadsheet or a database and you need to import into R.
---
<img src="img/data-science-cycle/data-science-cycle.003.png" width="90%" style="display: block; margin: auto auto auto 0;" />
???
Then we need to spend some time organising that data to make it easier to use and analyse. This often includes doublechecking the data for mistakes and tidying it and it may also include transforming it to get it to the table that you want, that makes it easier to use or analyse.
---
<img src="img/data-science-cycle/data-science-cycle.004.png" width="90%" style="display: block; margin: auto auto auto 0;" />
???
Once the data is in a format that is easy to work with, you want to visualize your data to start to gain some insights from it.
---
<img src="img/data-science-cycle/data-science-cycle.005.png" width="90%" style="display: block; margin: auto auto auto 0;" />
???
Then, perhaps you will go onto modelling your data.
---
<img src="img/data-science-cycle/data-science-cycle.006.png" width="90%" style="display: block; margin: auto auto auto 0;" />
???
And the reality is it never ends there. You will gain more insight into the data and you may need to go back and check and adjust your assumptions.
That last step is communicating your results and finding.
---
## Course toolkit
<br>
.pull-left[
### .gray[Course operation]
.gray[
- [coa-dataviz.netlify.app](https://coa-dataviz.netlify.app/)
- [Google classroom](https://classroom.google.com/)
]
]
.pull-right[
### .pink[Doing data science]
- .pink[Programming:]
- .pink[R]
- .pink[Posit]
- .pink[tidyverse]
- .pink[R Markdown]
- .gray[Version control and collaboration:]
- .gray[Git]
- .gray[GitHub]
]
---
## Learning goals
By the end of the course, you will be able to...
--
- gain insight from data
--
- gain insight from data, **reproducibly**
--
- gain insight from data, reproducibly, **using modern programming tools and techniques**
--
- gain insight from data, reproducibly **and collaboratively**, using modern programming tools and techniques
--
- gain insight from data, reproducibly **(with literate programming and version control)** and collaboratively, using modern programming tools and techniques
---
class: middle
# Reproducible data analysis
---
## Reproducibility checklist
.question[
What does it mean for a data analysis to be "reproducible"?
]
--
Near-term goals:
- Are the tables and figures reproducible from the code and data?
- Does the code actually do what you think it does?
- In addition to what was done, is it clear *why* it was done?
Long-term goals:
- Can the code be used for other data?
- Can you extend the code to do other things?
---
## Toolkit for reproducibility
- Scriptability `\(\rightarrow\)` .pink[R]
- Literate programming (code, narrative, output in one place) `\(\rightarrow\)` .pink[R Markdown]
- Version control `\(\rightarrow\)` .pink[Git / GitHub]
---
class: middle
# R and Posit
---
## R and Posit
.pull-left[
<img src="img/r-logo.png" width="25%" style="display: block; margin: auto;" />
- R is an open-source statistical **programming language**
- R is also an environment for statistical computing and graphics
- It's easily extensible with *packages*
]
.pull-right[
<img src="img/rstudio-logo.png" width="50%" style="display: block; margin: auto;" />
- Posit is a convenient interface for R called an **IDE** (integrated development environment), e.g. *"I write R code in the Posit IDE"*
- Posit is not a requirement for programming with R, but it's very commonly used by R programmers and data scientists
]
---
## R packages
- **Packages** are the fundamental units of reproducible R code. They include reusable R functions, the documentation that describes how to use them, and sample data<sup>1</sup>
- As of September 2020, there are over 16,000 R packages available on **CRAN** (the Comprehensive R Archive Network)<sup>2</sup>
- We're going to work with a small (but important) subset of these!
.footnote[
<sup>1</sup> Wickham and Bryan, [R Packages](https://r-pkgs.org/).
<sup>2</sup> [CRAN contributed packages](https://cran.r-project.org/web/packages/).
]
---
## Tour: R and Posit
<img src="img/tour-r-rstudio.png" width="80%" style="display: block; margin: auto;" />
---
## A short list (for now) of R essentials
- Functions are (most often) verbs, followed by what they will be applied to in parentheses:
```r
do_this(to_this)
do_that(to_this, to_that, with_those)
```
--
- Packages are installed with the `install.packages` function and loaded with the `library` function, once per session:
```r
install.packages("package_name")
library(package_name)
```
---
## R essentials (continued)
- Columns (variables) in data frames are accessed with `$`:
.small[
```r
dataframe$var_name
```
]
--
- Object documentation can be accessed with `?`
```r
?mean
```
---
## tidyverse
.pull-left[
<img src="img/tidyverse.png" width="99%" style="display: block; margin: auto;" />
]
.pull-right[
.center[.large[
[tidyverse.org](https://www.tidyverse.org/)
]]
- The **tidyverse** is an opinionated collection of R packages designed for data science
- All packages share an underlying philosophy and a common grammar
]
---
## rmarkdown
.pull-left[
.center[.large[
[rmarkdown.rstudio.com](https://rmarkdown.rstudio.com/)
]]
- **rmarkdown** and the various packages that support it enable R users to write their code and prose in reproducible computational documents
- We will generally refer to R Markdown documents (with `.Rmd` extension), e.g. *"Do this in your R Markdown document"* and rarely discuss loading the rmarkdown package
]
.pull-right[
<img src="img/rmarkdown.png" width="60%" style="display: block; margin: auto;" />
]
---
class: middle
# R Markdown
---
## R Markdown
- Fully reproducible reports -- each time you knit the analysis is ran from the beginning
- Simple markdown syntax for text
- Code goes in chunks, defined by three backticks, narrative goes outside of chunks
---
## Tour: R Markdown
<img src="img/tour-rmarkdown.png" width="90%" style="display: block; margin: auto;" />
---
## Environments
.tip[
The environment of your R Markdown document is separate from the Console!
]
Remember this, and expect it to bite you a few times as you're learning to work
with R Markdown!
---
## Environments
.pull-left[
First, run the following in the console
.small[
```r
x <- 2
x * 3
```
]
.question[
All looks good, eh?
]
]
--
.pull-right[
Then, add the following in an R chunk in your R Markdown document
.small[
```r
x * 3
```
]
.question[
What happens? Why the error?
]
]
---
## R Markdown help
.pull-left[
.center[
.midi[R Markdown Cheat Sheet
`Help -> Cheatsheets`]
]
<img src="img/rmd-cheatsheet.png" width="80%" style="display: block; margin: auto;" />
]
.pull-right[
.center[
.midi[Markdown Quick Reference
`Help -> Markdown Quick Reference`]
]
<img src="img/md-cheatsheet.png" width="80%" style="display: block; margin: auto;" />
]
---
## How will we use R Markdown?
- Every assignment / report / project / etc. is an R Markdown document
- You'll always have a template R Markdown document to start with
- The amount of scaffolding in the template will decrease over the semester
---
## What's with all the hexes?
<img src="img/hex-australia.png" width="60%" style="display: block; margin: auto;" />
.footnote[
Mitchell O'Hara-Wild, [useR! 2018 feature wall](https://www.mitchelloharawild.com/blog/user-2018-feature-wall/)
]
---
.your-turn[
.light-blue[.hand[Your turn:]] `AE 02 - Bechdel + R Markdown`
- [The Bechdel test](https://en.wikipedia.org/wiki/Bechdel_test) asks whether a work of fiction features at least two women who talk to each other about something other than a man, and there must be two women named characters.
- Go to [PositCloud](https://posit.cloud/) and start the assignment `AE 02 - Bechdel + R Markdown`.
- Open and knit the R Markdown document `bechdel.Rmd`, review the document, and fill in the blanks.
]
---
## Acknowledgements
* This course builds on the materials from [Data Science in a Box](https://datasciencebox.org/) developed by Mine Çetinkaya-Rundel and are adapted under the [Creative Commons Attribution Share Alike 4.0 International](https://github.com/rstudio-education/datascience-box/blob/master/LICENSE.md)
</textarea>
<style data-target="print-only">@media screen {.remark-slide-container{display:block;}.remark-slide-scaler{box-shadow:none;}}</style>
<script src="https://remarkjs.com/downloads/remark-latest.min.js"></script>
<script>var slideshow = remark.create({
"ratio": "16:9",
"highlightLines": true,
"highlightStyle": "solarized-light",
"countIncrementalSlides": false
});
if (window.HTMLWidgets) slideshow.on('afterShowSlide', function (slide) {
window.dispatchEvent(new Event('resize'));
});
(function(d) {
var s = d.createElement("style"), r = d.querySelector(".remark-slide-scaler");
if (!r) return;
s.type = "text/css"; s.innerHTML = "@page {size: " + r.style.width + " " + r.style.height +"; }";
d.head.appendChild(s);
})(document);
(function(d) {
var el = d.getElementsByClassName("remark-slides-area");
if (!el) return;
var slide, slides = slideshow.getSlides(), els = el[0].children;
for (var i = 1; i < slides.length; i++) {
slide = slides[i];
if (slide.properties.continued === "true" || slide.properties.count === "false") {
els[i - 1].className += ' has-continuation';
}
}
var s = d.createElement("style");
s.type = "text/css"; s.innerHTML = "@media print { .has-continuation { display: none; } }";
d.head.appendChild(s);
})(document);
// delete the temporary CSS (for displaying all slides initially) when the user
// starts to view slides
(function() {
var deleted = false;
slideshow.on('beforeShowSlide', function(slide) {
if (deleted) return;
var sheets = document.styleSheets, node;
for (var i = 0; i < sheets.length; i++) {
node = sheets[i].ownerNode;
if (node.dataset["target"] !== "print-only") continue;
node.parentNode.removeChild(node);
}
deleted = true;
});
})();
// add `data-at-shortcutkeys` attribute to <body> to resolve conflicts with JAWS
// screen reader (see PR #262)
(function(d) {
let res = {};
d.querySelectorAll('.remark-help-content table tr').forEach(tr => {
const t = tr.querySelector('td:nth-child(2)').innerText;
tr.querySelectorAll('td:first-child .key').forEach(key => {
const k = key.innerText;
if (/^[a-z]$/.test(k)) res[k] = t; // must be a single letter (key)
});
});
d.body.setAttribute('data-at-shortcutkeys', JSON.stringify(res));
})(document);
(function() {
"use strict"
// Replace <script> tags in slides area to make them executable
var scripts = document.querySelectorAll(
'.remark-slides-area .remark-slide-container script'
);
if (!scripts.length) return;
for (var i = 0; i < scripts.length; i++) {
var s = document.createElement('script');
var code = document.createTextNode(scripts[i].textContent);
s.appendChild(code);
var scriptAttrs = scripts[i].attributes;
for (var j = 0; j < scriptAttrs.length; j++) {
s.setAttribute(scriptAttrs[j].name, scriptAttrs[j].value);
}
scripts[i].parentElement.replaceChild(s, scripts[i]);
}
})();
(function() {
var links = document.getElementsByTagName('a');
for (var i = 0; i < links.length; i++) {
if (/^(https?:)?\/\//.test(links[i].getAttribute('href'))) {
links[i].target = '_blank';
}
}
})();
// adds .remark-code-has-line-highlighted class to <pre> parent elements
// of code chunks containing highlighted lines with class .remark-code-line-highlighted
(function(d) {
const hlines = d.querySelectorAll('.remark-code-line-highlighted');
const preParents = [];
const findPreParent = function(line, p = 0) {
if (p > 1) return null; // traverse up no further than grandparent
const el = line.parentElement;
return el.tagName === "PRE" ? el : findPreParent(el, ++p);
};
for (let line of hlines) {
let pre = findPreParent(line);
if (pre && !preParents.includes(pre)) preParents.push(pre);
}
preParents.forEach(p => p.classList.add("remark-code-has-line-highlighted"));
})(document);</script>
<script>
slideshow._releaseMath = function(el) {
var i, text, code, codes = el.getElementsByTagName('code');
for (i = 0; i < codes.length;) {
code = codes[i];
if (code.parentNode.tagName !== 'PRE' && code.childElementCount === 0) {
text = code.textContent;
if (/^\\\((.|\s)+\\\)$/.test(text) || /^\\\[(.|\s)+\\\]$/.test(text) ||
/^\$\$(.|\s)+\$\$$/.test(text) ||
/^\\begin\{([^}]+)\}(.|\s)+\\end\{[^}]+\}$/.test(text)) {
code.outerHTML = code.innerHTML; // remove <code></code>
continue;
}
}
i++;
}
};
slideshow._releaseMath(document);
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement('script');
script.type = 'text/javascript';
script.src = 'https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-MML-AM_CHTML';
if (location.protocol !== 'file:' && /^https?:/.test(script.src))
script.src = script.src.replace(/^https?:/, '');
document.getElementsByTagName('head')[0].appendChild(script);
})();
</script>
</body>
</html>