-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathtrain_dnr.py
434 lines (365 loc) · 20.4 KB
/
train_dnr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
import argparse
import os, time, datetime
parser = argparse.ArgumentParser()
# general
parser.add_argument('--data_root', required=True,
help='Path to directory that holds the object data. See dataio.py for directory structure etc..')
parser.add_argument('--logging_root', type=str, default=None, required=False,
help='Path to directory where to write tensorboard logs and checkpoints.')
# mesh
parser.add_argument('--calib_fp', type=str, default='_/calib.mat', required=False,
help='File name of calibration file')
parser.add_argument('--calib_format', type=str, default='convert', required=False,
help='Format of calibration file')
parser.add_argument('--obj_fp', type=str, default='_/mesh.obj', required=False,
help='Path of high-resolution mesh obj.')
parser.add_argument('--tex_fp', type=str, default=None, required=False,
help='Path of texture.')
# view datasets
parser.add_argument('--img_dir', type=str, default='_/rgb0', required=False,
help='Path to directory that holds view images')
parser.add_argument('--img_size', type=int, default=512,
help='Sidelength of generated images. Default 512. Only less than native resolution of images is recommended.')
parser.add_argument('--img_gamma', type=float, default=1.0,
help='Image gamma.')
# texture mapper
parser.add_argument('--texture_size', type=int, default=512,
help='Sidelength of neural texture. Default 512.')
parser.add_argument('--texture_num_ch', type=int, default=30,
help='Number of channels for neural texture.')
parser.add_argument('--mipmap_level', type=int, default=4, required=False,
help='Mipmap levels for neural texture. Default 4.')
parser.add_argument('--apply_sh', default=True, type = lambda x: (str(x).lower() in ['true', '1']),
help='Whether apply spherical harmonics to sampled feature maps. Default False.')
# render net
parser.add_argument('--nf0', type=int, default=80,
help='Number of features in outermost layer of U-Net architectures.')
# training
parser.add_argument('--max_epoch', type=int, default=2000, help='Maximum number of epochs to train for.')
parser.add_argument('--lr', type=float, default=0.001, help='Learning rate.')
parser.add_argument('--sampling_pattern', type=str, default='all', required=False)
parser.add_argument('--batch_size', type=int, default=1, help='Batch size.')
# validation
parser.add_argument('--sampling_pattern_val', type=str, default='all', required=False)
parser.add_argument('--val_freq', type=int, default=1000,
help='Test on validation data every X iterations.')
# misc
parser.add_argument('--exp_name', type=str, default='', help='(optional) Name for experiment.')
parser.add_argument('--checkpoint', default='',
help='Path to a checkpoint to load weights from.')
parser.add_argument('--start_epoch', type=int, default=0,
help='Start epoch')
parser.add_argument('--gpu_id', type=str, default='',
help='Cuda visible devices.')
parser.add_argument('--log_freq', type=int, default=100,
help='Save tensorboard logs every X iterations.')
parser.add_argument('--ckp_freq', type=int, default=5000, help='Save checkpoint every X iterations.')
opt = parser.parse_args()
if opt.logging_root is None:
opt.logging_root = os.path.join(opt.data_root, 'logs', 'dnr')
if opt.img_dir[:2] == '_/':
opt.img_dir = os.path.join(opt.data_root, opt.img_dir[2:])
if opt.calib_fp[:2] == '_/':
opt.calib_fp = os.path.join(opt.data_root, opt.calib_fp[2:])
if opt.obj_fp[:2] == '_/':
opt.obj_fp = os.path.join(opt.data_root, opt.obj_fp[2:])
if opt.tex_fp is not None and opt.tex_fp[:2] == '_/':
opt.tex_fp = os.path.join(opt.data_root, opt.tex_fp[2:])
obj_name = opt.obj_fp.split('/')[-1].split('.')[0]
opt.precomp_dir = os.path.join(opt.data_root, 'precomp_' + obj_name)
print('\n'.join(["%s: %s" % (key, value) for key, value in vars(opt).items()]))
# Set visible CUDA devices
if opt.gpu_id != '':
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu_id
import torch
from torch import nn
import torchvision
import numpy as np
import cv2
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
import dataio
import data_util
import util
import metric
import network
# device allocation
if opt.gpu_id == '':
device = torch.device('cpu')
else:
device = torch.device('cuda')
# load texture
if opt.tex_fp is not None:
texture_init = cv2.cvtColor(cv2.imread(opt.tex_fp), cv2.COLOR_BGR2RGB)
texture_init_resize = cv2.resize(texture_init, (opt.texture_size, opt.texture_size), interpolation = cv2.INTER_AREA).astype(np.float32) / 255.0
texture_init_use = torch.from_numpy(texture_init_resize).to(device)
# dataset for training views
view_dataset = dataio.ViewDataset(root_dir = opt.data_root,
img_dir = opt.img_dir,
calib_path = opt.calib_fp,
calib_format = opt.calib_format,
img_size = [opt.img_size, opt.img_size],
sampling_pattern = opt.sampling_pattern,
load_precompute = True,
precomp_high_dir = opt.precomp_dir,
precomp_low_dir = opt.precomp_dir,
img_gamma = opt.img_gamma,
)
# dataset for validation views
view_val_dataset = dataio.ViewDataset(root_dir = opt.data_root,
img_dir = opt.img_dir,
calib_path = opt.calib_fp,
calib_format = opt.calib_format,
img_size = [opt.img_size, opt.img_size],
sampling_pattern = opt.sampling_pattern_val,
load_precompute = True,
precomp_high_dir = opt.precomp_dir,
precomp_low_dir = opt.precomp_dir,
img_gamma = opt.img_gamma,
)
num_view_val = len(view_val_dataset)
# texture mapper
texture_mapper = network.TextureMapper(texture_size = opt.texture_size,
texture_num_ch = opt.texture_num_ch,
mipmap_level = opt.mipmap_level,
apply_sh = opt.apply_sh)
# render net
render_net = network.RenderingNet(nf0 = opt.nf0,
in_channels = opt.texture_num_ch,
out_channels = 3,
num_down_unet = 5,
use_gcn = False)
# interpolater
interpolater = network.Interpolater()
# L1 loss
criterionL1 = nn.L1Loss(reduction='mean').to(device)
# Optimizer
optimizerG = torch.optim.Adam(list(texture_mapper.parameters()) + list(render_net.parameters()), lr = opt.lr)
# load checkpoint
if opt.checkpoint:
util.custom_load([texture_mapper, render_net], ['texture_mapper', 'render_net'], opt.checkpoint)
# move to device
texture_mapper.to(device)
render_net.to(device)
interpolater.to(device)
# get module
texture_mapper_module = texture_mapper
render_net_module = render_net
# use multi-GPU
if opt.gpu_id != '':
texture_mapper = nn.DataParallel(texture_mapper)
render_net = nn.DataParallel(render_net)
interpolater = nn.DataParallel(interpolater)
# set to training mode
texture_mapper.train()
render_net.train()
interpolater.train()
# collect all networks
part_list = [texture_mapper_module, render_net_module]
part_name_list = ['texture_mapper', 'render_net']
print("*" * 100)
print("Number of parameters:")
print("texture mapper:")
opt.num_params_texture_mapper = util.print_network(texture_mapper)
print("render net:")
opt.num_params_render_net = util.print_network(render_net)
print("*" * 100)
def main():
print('Start buffering data for training views...')
view_dataset.buffer_all()
view_dataloader = DataLoader(view_dataset, batch_size = opt.batch_size, shuffle = True, num_workers = 8)
print('Start buffering data for validation views...')
view_val_dataset.buffer_all()
view_val_dataloader = DataLoader(view_val_dataset, batch_size = opt.batch_size, shuffle = False, num_workers = 8)
# directory name contains some info about hyperparameters.
dir_name = os.path.join(datetime.datetime.now().strftime('%m-%d') +
'_' + datetime.datetime.now().strftime('%H-%M-%S') +
'_' + opt.sampling_pattern +
'_' + opt.data_root.strip('/').split('/')[-1])
if opt.exp_name is not '':
dir_name += '_' + opt.exp_name
# directory for logging
log_dir = os.path.join(opt.logging_root, dir_name)
data_util.cond_mkdir(log_dir)
# directory for saving validation data on view synthesis
val_out_dir = os.path.join(log_dir, 'val_out')
val_gt_dir = os.path.join(log_dir, 'val_gt')
val_err_dir = os.path.join(log_dir, 'val_err')
data_util.cond_mkdir(val_out_dir)
data_util.cond_mkdir(val_gt_dir)
data_util.cond_mkdir(val_err_dir)
# Save all command line arguments into a txt file in the logging directory for later reference.
with open(os.path.join(log_dir, "params.txt"), "w") as out_file:
out_file.write('\n'.join(["%s: %s" % (key, value) for key, value in vars(opt).items()]))
writer = SummaryWriter(log_dir)
iter = opt.start_epoch * len(view_dataset)
print('Begin training...')
val_log_batch_id = 0
first_val = True
for epoch in range(opt.start_epoch, opt.max_epoch):
for view_trgt in view_dataloader:
start = time.time()
# get view data
uv_map = view_trgt[0]['uv_map'].to(device) # [N, H, W, 2]
sh_basis_map = view_trgt[0]['sh_basis_map'].to(device) # [N, H, W, 9]
alpha_map = view_trgt[0]['alpha_map'][:, None, :, :].to(device) # [N, 1, H, W]
img_gt = []
for i in range(len(view_trgt)):
img_gt.append(view_trgt[i]['img_gt'].to(device))
# sample texture
neural_img = texture_mapper(uv_map, sh_basis_map)
# rendering net
outputs = render_net(neural_img, None)
img_max_val = 2.0
outputs = (outputs * 0.5 + 0.5) * img_max_val # map to [0, img_max_val]
if type(outputs) is not list:
outputs = [outputs]
# We don't enforce a loss on the outermost 5 pixels to alleviate boundary errors, also weight loss by alpha
alpha_map_central = alpha_map[:, :, 5:-5, 5:-5]
for i in range(len(view_trgt)):
outputs[i] = outputs[i][:, :, 5:-5, 5:-5] * alpha_map_central
img_gt[i] = img_gt[i][:, :, 5:-5, 5:-5] * alpha_map_central
# loss on final image
loss_rn = list()
for idx in range(len(view_trgt)):
loss_rn.append(criterionL1(outputs[idx].contiguous().view(-1).float(), img_gt[idx].contiguous().view(-1).float()))
loss_rn = torch.stack(loss_rn, dim = 0).mean()
# total loss
loss_g = loss_rn
optimizerG.zero_grad()
loss_g.backward()
optimizerG.step()
# error metrics
with torch.no_grad():
err_metrics_batch_i = metric.compute_err_metrics_batch(outputs[0] * 255.0, img_gt[0] * 255.0, alpha_map_central, compute_ssim = False)
# tensorboard scalar logs of training data
writer.add_scalar("loss_g", loss_g, iter)
writer.add_scalar("loss_rn", loss_rn, iter)
writer.add_scalar("final_mae_valid", err_metrics_batch_i['mae_valid_mean'], iter)
writer.add_scalar("final_psnr_valid", err_metrics_batch_i['psnr_valid_mean'], iter)
end = time.time()
print("Iter %07d Epoch %03d loss_g %0.4f mae_valid %0.4f psnr_valid %0.4f t_total %0.4f" % (iter, epoch, loss_g, err_metrics_batch_i['mae_valid_mean'], err_metrics_batch_i['psnr_valid_mean'], end - start))
# tensorboard figure logs of training data
if not iter % opt.log_freq:
output_final_vs_gt = []
for i in range(len(view_trgt)):
output_final_vs_gt.append(outputs[i].clamp(min = 0., max = 1.))
output_final_vs_gt.append(img_gt[i].clamp(min = 0., max = 1.))
output_final_vs_gt.append((outputs[i] - img_gt[i]).abs().clamp(min = 0., max = 1.))
output_final_vs_gt = torch.cat(output_final_vs_gt, dim = 0)
writer.add_image("output_final_vs_gt",
torchvision.utils.make_grid(output_final_vs_gt,
nrow = outputs[0].shape[0],
range = (0, 1),
scale_each = False,
normalize = False).cpu().detach().numpy(),
iter)
# validation
if not iter % opt.val_freq:
start_val = time.time()
with torch.no_grad():
# error metrics
err_metrics_val = {}
err_metrics_val['mae_valid'] = []
err_metrics_val['mse_valid'] = []
err_metrics_val['psnr_valid'] = []
err_metrics_val['ssim_valid'] = []
# loop over batches
batch_id = 0
for view_val_trgt in view_val_dataloader:
start_val_i = time.time()
# get view data
uv_map = view_val_trgt[0]['uv_map'].to(device) # [N, H, W, 2]
sh_basis_map = view_val_trgt[0]['sh_basis_map'].to(device) # [N, H, W, 9]
alpha_map = view_val_trgt[0]['alpha_map'][:, None, :, :].to(device) # [N, 1, H, W]
view_idx = view_val_trgt[0]['idx']
batch_size = alpha_map.shape[0]
img_h = alpha_map.shape[2]
img_w = alpha_map.shape[3]
num_view = len(view_val_trgt)
img_gt = []
for i in range(num_view):
img_gt.append(view_val_trgt[i]['img_gt'].to(device))
# sample texture
neural_img = texture_mapper(uv_map, sh_basis_map)
# rendering net
outputs = render_net(neural_img, None)
img_max_val = 2.0
outputs = (outputs * 0.5 + 0.5) * img_max_val # map to [0, img_max_val]
if type(outputs) is not list:
outputs = [outputs]
# apply alpha
for i in range(num_view):
outputs[i] = outputs[i] * alpha_map
img_gt[i] = img_gt[i] * alpha_map
# tensorboard figure logs of validation data
if batch_id == val_log_batch_id:
output_final_vs_gt = []
for i in range(num_view):
output_final_vs_gt.append(outputs[i].clamp(min=0., max=1.))
output_final_vs_gt.append(img_gt[i].clamp(min=0., max=1.))
output_final_vs_gt.append(
(outputs[i] - img_gt[i]).abs().clamp(min=0., max=1.))
output_final_vs_gt = torch.cat(output_final_vs_gt, dim=0)
writer.add_image("output_final_vs_gt_val",
torchvision.utils.make_grid(output_final_vs_gt,
nrow=batch_size,
range=(0, 1),
scale_each=False,
normalize=False).cpu().detach().numpy(),
iter)
# error metrics
err_metrics_batch_i_final = metric.compute_err_metrics_batch(outputs[0] * 255.0,
img_gt[0] * 255.0, alpha_map,
compute_ssim=True)
for i in range(batch_size):
for key in list(err_metrics_val.keys()):
if key in err_metrics_batch_i_final.keys():
err_metrics_val[key].append(err_metrics_batch_i_final[key][i])
# save images
for i in range(batch_size):
cv2.imwrite(os.path.join(val_out_dir, str(iter).zfill(8) + '_' + str(
view_idx[i].cpu().detach().numpy()).zfill(5) + '.png'),
outputs[0][i, :].permute((1, 2, 0)).cpu().detach().numpy()[:, :,
::-1] * 255.)
cv2.imwrite(os.path.join(val_err_dir, str(iter).zfill(8) + '_' + str(
view_idx[i].cpu().detach().numpy()).zfill(5) + '.png'),
(outputs[0] - img_gt[0]).abs().clamp(min=0., max=1.)[i, :].permute(
(1, 2, 0)).cpu().detach().numpy()[:, :, ::-1] * 255.)
if first_val:
cv2.imwrite(os.path.join(val_gt_dir,
str(view_idx[i].cpu().detach().numpy()).zfill(5) + '.png'),
img_gt[0][i, :].permute((1, 2, 0)).cpu().detach().numpy()[:, :,
::-1] * 255.)
end_val_i = time.time()
print("Val batch %03d mae_valid %0.4f psnr_valid %0.4f ssim_valid %0.4f t_total %0.4f" % (
batch_id, err_metrics_batch_i_final['mae_valid_mean'],
err_metrics_batch_i_final['psnr_valid_mean'],
err_metrics_batch_i_final['ssim_valid_mean'], end_val_i - start_val_i))
batch_id += 1
for key in list(err_metrics_val.keys()):
if err_metrics_val[key]:
err_metrics_val[key] = np.vstack(err_metrics_val[key])
err_metrics_val[key + '_mean'] = err_metrics_val[key].mean()
else:
err_metrics_val[key + '_mean'] = np.nan
# tensorboard scalar logs of validation data
writer.add_scalar("final_mae_valid_val", err_metrics_val['mae_valid_mean'], iter)
writer.add_scalar("final_psnr_valid_val", err_metrics_val['psnr_valid_mean'], iter)
writer.add_scalar("final_ssim_valid_val", err_metrics_val['ssim_valid_mean'], iter)
first_val = False
val_log_batch_id = (val_log_batch_id + 1) % batch_id
end_val = time.time()
print("Val mae_valid %0.4f psnr_valid %0.4f ssim_valid %0.4f t_total %0.4f" % (
err_metrics_val['mae_valid_mean'], err_metrics_val['psnr_valid_mean'],
err_metrics_val['ssim_valid_mean'], end_val - start_val))
iter += 1
if iter % opt.ckp_freq == 0:
util.custom_save(os.path.join(log_dir, 'model_epoch-%d_iter-%s.pth' % (epoch, iter)),
part_list,
part_name_list)
util.custom_save(os.path.join(log_dir, 'model_epoch-%d_iter-%s.pth' % (epoch, iter)),
part_list,
part_name_list)
if __name__ == '__main__':
main()