-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcustom_inception.py
320 lines (264 loc) · 12 KB
/
custom_inception.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
from IPython.display import Image, display
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
import os
from skimage import io,transform
import inception
from cache import cache
from inception import transfer_values_cache
import glob
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
import pickle
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.cm as cm
import matplotlib
from get_csv_data import HandleData
from utils_laj import do_PCA
from utils_laj import plot_scatter
# Functions and classes for loading and using the Inception model.
inception.maybe_download()
model = inception.Inception()
def classify(image_path):
# Display the image.
display(Image(image_path))
# Use the Inception model to classify the image.
pred = model.classify(image_path=image_path)
# Print the scores and names for the top-10 predictions.
model.print_scores(pred=pred, k=10, only_first_name=True)
def plot_transfer_values(i,imlist,transfer_values):
print("Input image:")
# Plot the i'th image from the test-set.
plt.figure()
plt.imshow(imlist[i].reshape((32, 64)), interpolation='nearest')
# plt.show()
print("Transfer-values for the image using Inception model:")
# Transform the transfer-values into an image.
img = transfer_values[i]
img = img.reshape((32, 64))
# Plot the image for the transfer-values.
plt.figure()
plt.imshow(img, interpolation='nearest')
plt.show()
# def plot_scatter(values,cls,dim,label,label_x,label_y,label_z):
#
# if dim==3:
# colors = ['red', 'green', 'blue']
# cmap = matplotlib.colors.ListedColormap(colors)
#
# x = values[:, 0]
# y = values[:, 1]
# z = values[:, 2]
#
# fig = plt.figure()
# ax = fig.add_subplot(111,projection='3d')
# sc=ax.scatter(x,y,z,c=cls,cmap=cmap)
# plt.title(label)
# # plt.ylabel(label_x)
# # plt.xlabel(label_y)
# ax.set_xlabel(label_x)
# ax.set_ylabel(label_y)
# ax.set_zlabel(label_z)
#
# tb = plt.table(cellText=[[x] for x in ['Dirty','Average','Clean']],
# loc='best',
# colWidths=[0.13],
# rowColours=cmap(np.array([0, 1, 2]))
# #cellColours=cmap(np.array([[0],[1],[2]]))
#
# )
# tb.auto_set_font_size(False)
# tb.set_fontsize(10)
#
# else:
# plt.figure()
# # cmap = cm.Set1(np.linspace(0.0, 1.0, num_classes))
# colors = ['red', 'green', 'blue']
# classes = ['Dirty','Average','Clean']
# cmap = matplotlib.colors.ListedColormap(colors)
# # colors = cmap[cls]
# x = values[:, 0]
# y = values[:, 1]
# plt.scatter(x,y ,c=cls,cmap=cmap,label=classes)
# plt.title(label)
# plt.xlabel(label_x)
# plt.ylabel(label_y)
#
# # cb = plt.colorbar()
# # loc = np.arange(0, max(cls), max(cls) / float(len(colors)))
# # cb.set_ticks(loc)
# # cb.set_ticklabels(['dirty','average','clean'])
# # unique_classes = list(set(classes))
# tb = plt.table(cellText=[[x] for x in classes],
# loc='best',
# colWidths=[0.13],
# rowColours=cmap(np.array([0, 1, 2]))
# # cellColours=cmap(np.array([[0],[1],[2]]))
#
# )
# tb.auto_set_font_size(False)
# tb.set_fontsize(10)
def do_TSNE(transfer_values_train,cls_train,label='',pca_components=50):
pca = PCA(n_components=pca_components)
transfer_values_50d = pca.fit_transform(transfer_values_train)
tsne = TSNE(n_components=3)
transfer_values_reduced = tsne.fit_transform(transfer_values_50d)
print(label, tsne.kl_divergence_)
plot_scatter(transfer_values_reduced, cls_train, 3, label+'TSNE 3D','tSNE x','tSNE y','tSNE z')
plot_scatter(transfer_values_reduced, cls_train, 2, label+'TSNE 2D','tSNE x','tSNE y','tSNE z')
# def do_PCA(transfer_values_train,cls_train,label=''):
# pca = PCA(n_components=3)
# transfer_values_reduced = pca.fit_transform(transfer_values_train)
# print(label,pca.explained_variance_ratio_,np.sum(pca.explained_variance_ratio_))
# explain_var = pca.explained_variance_ratio_ * 100
# label_x='PCA component 1\nExplained variance = '+str(round(explain_var[0],2))+'%'
# label_y = 'PCA component 2\nExplained variance = ' + str(round(explain_var[1],2))+'%'
# label_z = 'PCA component 3\nExplained variance = ' + str(round(explain_var[2],2))+'%'
# plot_scatter(transfer_values_reduced, cls_train, 2, label,label_x,label_y,label_z)
# plot_scatter(transfer_values_reduced, cls_train, 3, label,'PCA component 1\nExplained variance = '+str(round(explain_var[0],2))+'%','PCA component 2\nExplained variance = '+str(round(explain_var[1],2))+'%','PCA component 3\nExplained variance = '+str(round(explain_var[2],2))+'%')
# cifar10.maybe_download_and_extract()
# class_names = cifar10.load_class_names()
# images_train, cls_train, labels_train = cifar10.load_training_data()
# print(np.unique(cls_train))
# print(cifar10.data_path)
# images_train = []
path = r'D:\LAHIRU\Work\Toilet\inceptionV3_custom\data\custom'
file_path_cache_train = os.path.join(path, 'inception_train.pkl')
file_path_cache_train_cls = os.path.join(path, 'inception_train_cls.pkl')
# imnames = glob.glob(r'D:\LAHIRU\Work\Toilet\inceptionV3_custom\Urinal_images\*.JPG')
# imlist = (io.imread_collection(imnames))
# cat1 = (io.imread_collection(glob.glob(r'D:\LAHIRU\Work\Toilet\inceptionV3_custom\Urinal_images\cat1\*.JPG')))
#
# cat2 = (io.imread_collection(glob.glob(r'D:\LAHIRU\Work\Toilet\inceptionV3_custom\Urinal_images\cat2\*.JPG')))
#
# cat3 = (io.imread_collection(glob.glob(r'D:\LAHIRU\Work\Toilet\inceptionV3_custom\Urinal_images\cat3\*.JPG')))
# for im in imlist:
# images_train.append(im)
# images_train = np.array(images_train)
# print(images_train.shape)
# cls_train = []
# print("cat1")
# for im in cat1:
# images_train.append(im)
# cls_train.append(0)
# print("cat2")
# for im in cat2:
# images_train.append(im)
# cls_train.append(1)
# print("cat3")
# for im in cat3:
# images_train.append(im)
# cls_train.append(2)
# images_train = np.array(images_train)
# cls_train = np.array(cls_train)
cls_train = cache(file_path_cache_train_cls,fn=False)
images_train = cache(file_path_cache_train,fn=False)
# with open(file_path_cache_train_cls, mode='wb') as file:
# pickle.dump(cls_train, file)
# print(images_train.shape,cls_train.shape)
data_set = HandleData(3)
data_set.total_data=227
data_set.data_set=images_train
data_set.label_set=cls_train
transfer_values_train = transfer_values_cache(cache_path=file_path_cache_train,
images=images_train,
model=model)
print(transfer_values_train.shape,images_train.shape)
# plot_transfer_values(50,images_train,transfer_values_train)
Z, label_x, label_y, label_z=do_PCA(transfer_values_train,cls_train,'PCA analysis of extracted features\nDCNN = InceptionV3 , Layer = AvgPool')
# plot_scatter(Z[:,3:], cls_train, 3, 'other eigen values',label_x,label_y,label_z)
plt.show()
# pca = PCA(n_components=3)
# transfer_values_reduced = pca.fit_transform(transfer_values_train)
# plot_scatter(transfer_values_reduced,cls_train,2,'pca_2')
# plot_scatter(transfer_values_reduced,cls_train,3,'pca_3')
# do_TSNE(transfer_values_train,cls_train,'before training ')
# pca = PCA(n_components=50)
# transfer_values_50d = pca.fit_transform(transfer_values_train)
# tsne = TSNE(n_components=3)
# transfer_values_reduced = tsne.fit_transform(transfer_values_50d)
# plot_scatter(transfer_values_reduced,cls_train,3,'TSNE_3d')
# plot_scatter(transfer_values_reduced,cls_train,2,'TSNE_2d')
# plt.show()
learning_rate = 0.01
num_steps = 1000
batch_size = 128
display_step = 100
hidden_size = 1024
input_size = 2048
_SAVEFLAG = 0
_TRAINING = 0
_LOADDIR = './save/inception_v3/'
x = tf.placeholder(tf.float32, shape=[None, input_size], name='x')
y_true = tf.placeholder(tf.float32, shape=[None, 3], name='y_true')
keep_prob = tf.placeholder(tf.float32)
# y_true_cls = tf.argmax(y_true, dimension=1)
weights = {
'h1': tf.Variable(tf.random_normal([input_size, hidden_size])),
'out': tf.Variable(tf.random_normal([hidden_size, 3]))
}
biases = {
'b1': tf.Variable(tf.random_normal([hidden_size])),
'out': tf.Variable(tf.random_normal([3]))
}
def neural_net(x):
# Hidden fully connected layer with 256 neurons
layer_1 = tf.nn.relu(tf.add(tf.matmul(x, weights['h1']), biases['b1']))
layer_1_drop = tf.nn.dropout(layer_1, keep_prob)
# Output fully connected layer with a neuron for each class
out_layer = tf.matmul(layer_1_drop, weights['out']) + biases['out']
return out_layer,layer_1
logits,hidden_layer = neural_net(x)
prediction = tf.nn.softmax(logits)
loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y_true))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss_op)
correct_pred = tf.equal(tf.argmax(prediction, 1), tf.argmax(y_true, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
init = tf.global_variables_initializer()
saver = tf.train.Saver()
with tf.Session() as sess:
# Run the initializer
sess.run(init)
if _SAVEFLAG != 1 and _TRAINING != 1:
saver_restore = tf.train.import_meta_graph(_LOADDIR+'DAEandDNN_save.meta')
saver_restore.restore(sess, tf.train.latest_checkpoint(_LOADDIR))
if _TRAINING == 1:
for step in range(1, num_steps+1):
batch_x, batch_y = data_set.next_batch(batch_size)
batch_y = tf.one_hot(batch_y,3).eval()
# print(batch_x.shape,batch_y.shape)
# Run optimization op (backprop)
sess.run(train_op, feed_dict={x: batch_x, y_true: batch_y,keep_prob: 0.3})
if step % display_step == 0 or step == 1:
# Calculate batch loss and accuracy
loss, acc = sess.run([loss_op, accuracy], feed_dict={x: batch_x,y_true: batch_y,keep_prob: 1})
print("Step " + str(step) + ", Minibatch Loss= " + "{:.4f}".format(loss) + ", Training Accuracy= " + "{:.3f}".format(acc))
print("Optimization Finished!")
if _SAVEFLAG == 1:
saver.save(sess, './data_aug/DAEandDNN_save')
print("Testing Accuracy:", sess.run(accuracy, feed_dict={x: data_set.data_set,y_true: tf.one_hot(data_set.label_set, 3).eval(),keep_prob: 1.0}))
output,hidden = sess.run([logits,hidden_layer], feed_dict={x: data_set.data_set,y_true: tf.one_hot(data_set.label_set, 3).eval(),keep_prob: 1.0})
# plot_scatter(output,data_set.label_set,3,'after training output_layer')
# plot_scatter(hidden, data_set.label_set, 3, 'after training hidden_layer')
# do_TSNE(output, data_set.label_set, label='after training output_layer ',pca_components=3)
do_PCA(output, data_set.label_set, label='After training\nOutput Layer PCA Analysis')
# do_TSNE(hidden,data_set.label_set,label='after training hidden_layer ')
Z, label_x, label_y, label_z=do_PCA(hidden, data_set.label_set, label='After training\nHidden Layer PCA Analysis')
print(hidden.shape,output.shape)
from sklearn.cluster import KMeans
from sklearn.cluster import DBSCAN
np.random.seed(42)
k_cls = 3
cluster = 'kmeans'
if cluster == 'kmeans':
# kmeans = KMeans(n_clusters=k_cls,init='k-means++',n_init=k_cls)
kmeans = KMeans(n_clusters=k_cls)
kmeans.fit(Z)
labels = kmeans.labels_
elif cluster == 'dbscan':
db = DBSCAN(eps=1, min_samples=10).fit(Z)
labels = db.labels_
plot_scatter(Z, labels, 3, 'kmeans', label_x, label_y, label_z)
plt.show()