-
Notifications
You must be signed in to change notification settings - Fork 0
/
sudoku_solve.py
85 lines (66 loc) · 2.12 KB
/
sudoku_solve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import numpy as np
class Sudoku_solver():
"""
Solve Sudoku using Backtracking algorithm
"""
def __init__(self, board, size):
self.board = board
self.size = size
def print_board(self):
"""
Visualize result board
"""
for i in range(len(self.board)):
if i % 3 == 0 and i != 0:
print("- - - - - - - - - - - - - ")
for j in range(len(self.board[0])):
if j % 3 == 0 and j != 0:
print(" | ", end="")
if j == 8:
print(self.board[i][j])
else:
print(str(self.board[i][j]) + " ", end="")
def valid(self, num, pos):
"""
Check valid board when adding new num in position pos
"""
# Check valid row
for j in range(len(self.board[0])):
if self.board[pos[0]][j] == num and pos[1] != j:
return False
# Check valid column
for i in range(len(self.board)):
if self.board[i][pos[1]] == num and pos[0] != i:
return False
# Check valid box
# There are 9 boxes
box_x = pos[0] // 3
box_y = pos[1] // 3
for i in range(box_x*3, box_x*3+3):
for j in range(box_y*3, box_y*3+3):
if self.board[i][j] == num and (i, j) != pos:
return False
return True
def find_empty_cell(self):
"""
Find empty cell and return its position
"""
for i in range(len(self.board)):
for j in range(len(self.board[0])):
if self.board[i][j] == 0:
return (i, j)
return None
def solve(self):
pos = self.find_empty_cell()
# Base case, complete the board
if not pos:
return True
else:
row, col = pos
for i in range(1, 10):
if self.valid(i, (row, col)):
self.board[row][col] = i
if self.solve():
return True
self.board[row][col] = 0
return False