forked from stefsietz/reframe360resolve
-
Notifications
You must be signed in to change notification settings - Fork 8
/
OpenCLKernel.cpp
194 lines (155 loc) · 5.48 KB
/
OpenCLKernel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#include <map>
#include <stdio.h>
#include <string>
#ifdef _WIN64
#include <Windows.h>
#else
#include <pthread.h>
#endif
#ifdef __APPLE__
#include <OpenCL/cl.h>
#else
#include <CL/cl.h>
#endif
#include "OpenCLKernel.h"
#define MAX_SOURCE_SIZE (0x100000)
void CheckError(cl_int p_Error, const char* p_Msg)
{
if (p_Error != CL_SUCCESS)
{
fprintf(stderr, "%s [%d]\n", p_Msg, p_Error);
}
}
class Locker
{
public:
Locker()
{
#ifdef _WIN64
InitializeCriticalSection(&mutex);
#else
pthread_mutex_init(&mutex, NULL);
#endif
}
~Locker()
{
#ifdef _WIN64
DeleteCriticalSection(&mutex);
#else
pthread_mutex_destroy(&mutex);
#endif
}
void Lock()
{
#ifdef _WIN64
EnterCriticalSection(&mutex);
#else
pthread_mutex_lock(&mutex);
#endif
}
void Unlock()
{
#ifdef _WIN64
LeaveCriticalSection(&mutex);
#else
pthread_mutex_unlock(&mutex);
#endif
}
private:
#ifdef _WIN64
CRITICAL_SECTION mutex;
#else
pthread_mutex_t mutex;
#endif
};
#ifdef _WIN64
static HMODULE GetThisDllHandle()
{
MEMORY_BASIC_INFORMATION info;
size_t len = VirtualQueryEx(GetCurrentProcess(), (void*)GetThisDllHandle, &info, sizeof(info));
return len ? (HMODULE)info.AllocationBase : NULL;
}
#endif
void RunOpenCLKernel(void* p_CmdQ, int p_Width, int p_Height, float* p_Fov, float* p_Tinyplanet, float* p_Rectilinear, const float* p_Input, float* p_Output, float* p_RotMat, int p_Samples, bool p_Bilinear)
{
cl_int error;
cl_command_queue cmdQ = static_cast<cl_command_queue>(p_CmdQ);
// store device id and kernel per command queue (required for multi-GPU systems)
static std::map<cl_command_queue, cl_device_id> deviceIdMap;
static std::map<cl_command_queue, cl_kernel> kernelMap;
static Locker locker; // simple lock to control access to the above maps from multiple threads
locker.Lock();
// find the device id corresponding to the command queue
cl_device_id deviceId = NULL;
if (deviceIdMap.find(cmdQ) == deviceIdMap.end())
{
error = clGetCommandQueueInfo(cmdQ, CL_QUEUE_DEVICE, sizeof(cl_device_id), &deviceId, NULL);
CheckError(error, "Unable to get the device");
deviceIdMap[cmdQ] = deviceId;
}
else
{
deviceId = deviceIdMap[cmdQ];
}
// find the program kernel corresponding to the command queue
cl_kernel kernel;
cl_context clContext = NULL;
error = clGetCommandQueueInfo(cmdQ, CL_QUEUE_CONTEXT, sizeof(cl_context), &clContext, NULL);
CheckError(error, "Unable to get the context");
if (kernelMap.find(cmdQ) == kernelMap.end())
{
cl_program program = clCreateProgramWithSource(clContext, 1, (const char**)&KernelSource, NULL, &error);
CheckError(error, "Unable to create program");
error = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
CheckError(error, "Unable to build program");
if (error == CL_BUILD_PROGRAM_FAILURE) {
// Determine the size of the log
size_t log_size;
clGetProgramBuildInfo(program, deviceId, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
// Allocate memory for the log
char *log = (char *)malloc(log_size);
// Get the log
clGetProgramBuildInfo(program, deviceId, CL_PROGRAM_BUILD_LOG, log_size, log, NULL);
std::string log_str(log);
// Print the log
printf("%s\n", log);
}
kernel = clCreateKernel(program, "Reframe360Kernel", &error);
CheckError(error, "Unable to create kernel");
kernelMap[cmdQ] = kernel;
}
else
{
kernel = kernelMap[cmdQ];
}
int bilinear(p_Bilinear ? 1 : 0);
locker.Unlock();
int count = 0;
error = clSetKernelArg(kernel, count++, sizeof(int), &p_Width);
error |= clSetKernelArg(kernel, count++, sizeof(int), &p_Height);
cl_mem fov_buf = clCreateBuffer(clContext, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(float)*p_Samples, p_Fov, &error);
cl_mem tinyplanet_buf = clCreateBuffer(clContext, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(float)*p_Samples, p_Tinyplanet, &error);
cl_mem rectilinear_buf = clCreateBuffer(clContext, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(float)*p_Samples, p_Rectilinear, &error);
error |= clSetKernelArg(kernel, count++, sizeof(cl_mem), &fov_buf);
error |= clSetKernelArg(kernel, count++, sizeof(cl_mem), &tinyplanet_buf);
error |= clSetKernelArg(kernel, count++, sizeof(cl_mem), &rectilinear_buf);
error |= clSetKernelArg(kernel, count++, sizeof(cl_mem), &p_Input);
error |= clSetKernelArg(kernel, count++, sizeof(cl_mem), &p_Output);
cl_mem rotmat_buf = clCreateBuffer(clContext, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(float)*9*p_Samples, p_RotMat, &error);
error |= clSetKernelArg(kernel, count++, sizeof(cl_mem), &rotmat_buf);
error |= clSetKernelArg(kernel, count++, sizeof(int), &p_Samples);
error |= clSetKernelArg(kernel, count++, sizeof(int), &bilinear);
CheckError(error, "Unable to set kernel arguments");
size_t localWorkSize[2], globalWorkSize[2];
clGetKernelWorkGroupInfo(kernel, deviceId, CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), localWorkSize, NULL);
localWorkSize[1] = 1;
globalWorkSize[0] = ((p_Width + localWorkSize[0] - 1) / localWorkSize[0]) * localWorkSize[0];
globalWorkSize[1] = p_Height;
cl_event clEvent;
clEnqueueNDRangeKernel(cmdQ, kernel, 2, NULL, globalWorkSize, localWorkSize, 0, NULL, &clEvent);
clWaitForEvents(1, &clEvent);
clReleaseMemObject(fov_buf);
clReleaseMemObject(tinyplanet_buf);
clReleaseMemObject(rectilinear_buf);
clReleaseMemObject(rotmat_buf);
}