Skip to content

Latest commit

 

History

History
208 lines (159 loc) · 9.38 KB

File metadata and controls

208 lines (159 loc) · 9.38 KB

1.1 题目

Say you have an array for which the ith element is the price of a given stock on day i.

If you were only permitted to complete at most one transaction (ie, buy one and sell one share of the stock), design an algorithm to find the maximum profit.

这是卖股票的一个题目,一个数组prices,其中prices[i]表示第i天股票的价格。根据题意我们知道只能进行一次交易,但需要获得最大的利润。

1.2 解题思路

我们需要在最低价买入,最高价卖出,当然买入一定要在卖出之前。

对于这一题,还是比较简单的,我们只需要遍历一次数组,通过一个变量记录当前最低价格,同时算出此次交易利润,并与当前最大值比较就可以了。

1.3 解题代码

public class Solution {
    public int maxProfit(int[] prices) {
        if (prices == null || prices.length == 0) {
            return 0;
        }

        int min = Integer.MAX_VALUE;  //just remember the smallest price
        int profit = 0;
        for (int i : prices) {
            min = i < min ? i : min;
            profit = (i - min) > profit ? i - min : profit;
        }

        return profit;
    }
}

2.1 题目

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times). However, you may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

假设有一个数组,它的第i个元素是一个给定的股票在第i天的价格。设计一个算法来找到最大的利润。你可以完成尽可能多的交易(多次买卖股票)。然而,你不能同时参与多个交易(你必须在再次购买前出售股票)。

2.2 解题思路

因为不限制交易次数,我们在第i天买入,如果发现i + 1天比i高,那么就可以累加到利润里面。

2.3 解题代码

public class Solution {
    public int maxProfit(int[] prices) {
        int profit = 0;
        for (int i = 0; i < prices.length - 1; i++) {
            int diff = prices[i+1] - prices[i];
            if (diff > 0) {
                profit += diff;
            }
        }
        return profit;
    }
}

3.1 题目

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most two transactions.

Note: You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

假设你有一个数组,它的第i个元素是一支给定的股票在第i天的价格。设计一个算法来找到最大的利润。你最多可以完成两笔交易。然而,你不能同时参与多个交易(你必须在再次购买前出售股票)。

3.2 解题思路

最多允许两次不相交的交易,也就意味着这两次交易间存在某一分界线,考虑到可只交易一次,也可交易零次,故分界线的变化范围为第一天至最后一天,只需考虑分界线两边各自的最大利润,最后选出利润和最大的即可。

这种方法抽象之后则为首先将 [1,n] 拆分为 [1,i] 和 [i+1,n], 参考卖股票系列的第一题计算各自区间内的最大利润即可。[1,i] 区间的最大利润很好算,但是如何计算 [i+1,n] 区间的最大利润值呢?难道需要重复 n 次才能得到?注意到区间的右侧 n 是个不变值,我们从 [1, i] 计算最大利润是更新波谷的值,那么我们可否逆序计算最大利润呢?这时候就需要更新记录波峰的值了

3.3 解题代码

public class Solution {
    /**
     * @param prices: Given an integer array
     * @return: Maximum profit
     */
    public int maxProfit(int[] prices) {
        if (prices == null || prices.length <= 1) return 0;

        // get profit in the front of prices
        int[] profitFront = new int[prices.length];
        profitFront[0] = 0;
        for (int i = 1, valley = prices[0]; i < prices.length; i++) {
            profitFront[i] = Math.max(profitFront[i - 1], prices[i] - valley);
            valley = Math.min(valley, prices[i]);
        }
        // get profit in the back of prices, (i, n)
        int[] profitBack = new int[prices.length];
        profitBack[prices.length - 1] = 0;
        for (int i = prices.length - 2, peak = prices[prices.length - 1]; i >= 0; i--) {
            profitBack[i] = Math.max(profitBack[i + 1], peak - prices[i]);
            peak = Math.max(peak, prices[i]);
        }
        // add the profit front and back
        int profit = 0;
        for (int i = 0; i < prices.length; i++) {
            profit = Math.max(profit, profitFront[i] + profitBack[i]);
        }

        return profit;
    }
};

4.1 题目

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most k transactions.

Example

Given prices = [4,4,6,1,1,4,2,5], and k = 2, return 6.

Note

You may not engage in multiple transactions at the same time (i.e., you must sell the stock before you buy again).

Challenge

O(nk) time.

题目和上面一样,就是变成要求交易k次,时间复杂度O(nk) 。

4.2 解题思路

我们仍然使用动态规划来完成。我们维护两种量,一个是当前到达第i天可以最多进行j次交易,最好的利润是多少(global[i][j]),另一个是当前到达第i天,最多可进行j次交易,并且最后一次交易在当天卖出的最好的利润是多少(local[i][j])。下面我们来看递推式,全局的比较简单,

global[i][j]=max(local[i][j],global[i-1][j])

也就是去当前局部最好的,和过往全局最好的中大的那个(因为最后一次交易如果包含当前天一定在局部最好的里面,否则一定在过往全局最优的里面)。

全局(到达第i天进行j次交易的最大收益) = max{局部(在第i天交易后,恰好满足j次交易),全局(到达第i-1天时已经满足j次交易)}

对于局部变量的维护,递推式是

local[i][j]=max(global[i-1][j-1]+max(diff,0),local[i-1][j]+diff)

也就是看两个量,第一个是全局到i-1天进行j-1次交易,然后加上今天的交易,如果今天是赚钱的话(也就是前面只要j-1次交易,最后一次交易取当前天),第二个量则是取local第i-1天j次交易,然后加上今天的差值(这里因为local[i-1][j]比如包含第i-1天卖出的交易,所以现在变成第i天卖出,并不会增加交易次数,而且这里无论diff是不是大于0都一定要加上,因为否则就不满足local[i][j]必须在最后一天卖出的条件了)。

局部(在第i天交易后,总共交易了j次) = max{情况2,情况1}

情况1:在第i-1天时,恰好已经交易了j次(local[i-1][j]),那么如果i-1天到i天再交易一次:即在第i-1天买入,第i天卖出(diff),则这不并不会增加交易次数!【例如我在第一天买入,第二天卖出;然后第二天又买入,第三天再卖出的行为 和 第一天买入,第三天卖出 的效果是一样的,其实只进行了一次交易!因为有连续性】 情况2:第i-1天后,共交易了j-1次(global[i-1][j-1]),因此为了满足“第i天过后共进行了j次交易,且第i天必须进行交易”的条件:我们可以选择1:在第i-1天买入,然后再第i天卖出(diff),或者选择在第i天买入,然后同样在第i天卖出(收益为0)。

上面的算法中对于天数需要一次扫描,而每次要对交易次数进行递推式求解,所以时间复杂度是O(n*k),如果是最多进行两次交易,那么复杂度还是O(n)。空间上只需要维护当天数据皆可以,所以是O(k),当k=2,则是O(1)。

补充:这道题还有一个陷阱,就是当k大于天数时,其实就退化成 Best Time to Buy and Sell Stock II 了。

4.3 解题代码

public class Solution {
    /**
     * @param k: An integer
     * @param prices: Given an integer array
     * @return: Maximum profit
     */
    public int maxProfit(int k, int[] prices) {
        if (prices == null || prices.length < 2) {
            return 0;
        }
        int days = prices.length;

        if (days <= k) {
            return maxProfit2(prices);
        }
        // local[i][j] 表示前i天,至多进行j次交易,第i天必须sell的最大获益
        int[][] local = new int[days][k + 1];
        // global[i][j] 表示前i天,至多进行j次交易,第i天可以不sell的最大获益
        int[][] global = new int[days][k + 1];

        for (int i = 1; i < days; i++) {
            int diff = prices[i] - prices[i - 1];
            for (int j = 1; j <= k; j++) {
                local[i][j] = Math.max(global[i - 1][j-1] + Math.max(diff, 0),
                        local[i - 1][j] + diff);
                global[i][j] = Math.max(global[i - 1][j], local[i][j]);
            }
        }
        return global[days - 1][k];
    }

    public int maxProfit2(int[] prices) {
        int maxProfit = 0;
        for (int i = 1; i < prices.length; i++) {
            if (prices[i] > prices[i-1]) {
                maxProfit += prices[i] - prices[i-1];
            }
        }
        return maxProfit;
    }
};