-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtcore.py
377 lines (317 loc) · 11.9 KB
/
tcore.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import data_structures as ds
NUM = 'num'
CONSTRAINTS = 'constraints'
HOLD = 'hold'
GOAL = 'goal'
SEEN_PHI = 'seen-phi'
SEEN_PSI = 'seen-psi'
SEPARATOR = '-'
GOAL_ACHIEVED = "goal-achieved"
OPTIMIZED = False
class ProblemUnsolvableException(Exception):
pass
def get_all_atoms(condition):
if isinstance(condition, ds.Literal):
return [condition]
elif isinstance(condition, ds.And) or isinstance(condition, ds.Or):
atoms = []
for component in condition.components:
atoms += get_all_atoms(component)
return atoms
else:
return []
def remove_duplicates(relevant_atoms):
elems = []
for elem in relevant_atoms:
if elem not in elems:
elems.append(elem)
return elems
def build_relevancy_dict(C):
relevancy_dict = {}
for c in C:
if ds.has2gd(c.kind):
relevant_atoms = get_all_atoms(c.gd1) + get_all_atoms(c.gd2)
else:
relevant_atoms = get_all_atoms(c.gd1)
relevant_atoms = remove_duplicates(relevant_atoms)
for atom in relevant_atoms:
if atom.literal not in relevancy_dict:
relevancy_dict[atom.literal] = []
relevancy_dict[atom.literal].append(c)
return relevancy_dict
def get_effects(action):
if isinstance(action, ds.Action):
for eff in action.effects:
yield eff.condition, eff.effect
else:
raise Exception('Error on gamma function')
def gamma(literal, action):
disjunction = []
for cond, eff in get_effects(action):
if literal == eff:
if cond == ds.TRUE():
# in this case cond == TRUE(), so it is a simple effect
return ds.TRUE()
# cond is a list of literals
disjunction.append(cond)
if not disjunction:
return ds.FALSE()
return ds.Or(disjunction)
def gamma_substitution(literal, action):
negated_literal = literal.negate()
gamma1 = gamma(literal, action)
gamma2 = gamma(negated_literal, action).negate()
conjunction = ds.And([literal, gamma2])
return ds.Or([gamma1, conjunction])
def regression_aux(phi, action):
return regression(phi, action).simplified()
def regression(phi, action):
if isinstance(phi, ds.TRUE):
return phi
elif isinstance(phi, ds.FALSE):
return phi
elif isinstance(phi, ds.Literal):
return gamma_substitution(phi, action)
elif isinstance(phi, ds.Or):
return ds.Or([regression(component, action) for component in phi.components])
else:
# And
return ds.And([regression(component, action) for component in phi.components])
def simple_substitution(set, phi):
if phi == ds.TRUE():
return ds.TRUE()
if phi == ds.FALSE():
return ds.FALSE()
if isinstance(phi, ds.Literal):
if phi in set:
return ds.TRUE()
phi_neg = phi.negate()
if phi_neg in set:
return ds.FALSE()
else:
# phi is not in the initial state
if phi.negated:
return ds.TRUE()
else:
return ds.FALSE()
elif isinstance(phi, ds.Or):
return ds.Or([simple_substitution(set, component) for component in phi.components])
else:
# Conjunction
return ds.And([simple_substitution(set, component) for component in phi.components])
def true_init(state, phi):
logical_value_in_init = simple_substitution(state, phi).simplified()
if logical_value_in_init == ds.TRUE():
return True
elif logical_value_in_init == ds.FALSE():
return False
else:
raise Exception("ERROR in initial state evaluation of a constraint")
def get_fresh_monitoring_atom(name, number):
return ds.Literal('{}{}{}'.format(name, SEPARATOR, number), False)
def get_constraints_to_monitor(C):
for constr in C:
if constr.kind != ds.ALWAYS:
yield constr
def evaluate_constraint(constr, initial_state):
if constr.kind == ds.SOMETIME:
return HOLD, true_init(initial_state, constr.gd1)
elif constr.kind == ds.SOMETIMEAFTER:
return HOLD, true_init(initial_state, constr.gd2) or not true_init(initial_state, constr.gd1)
elif constr.kind == ds.SOMETIMEBEFORE:
return SEEN_PSI, true_init(initial_state, constr.gd2)
elif constr.kind == ds.ATMOSTONCE:
return SEEN_PHI, true_init(initial_state, constr.gd1)
else:
return None, true_init(initial_state, constr.gd1)
# TODO test
def get_monitoring_atoms(C, I):
monitoring_atoms = []
monitoring_atoms_counter = 0
initial_state_prime = []
for constr in get_constraints_to_monitor(C):
type, init_state_value = evaluate_constraint(constr, I)
monitoring_atom = get_fresh_monitoring_atom(type, monitoring_atoms_counter)
monitoring_atoms.append(monitoring_atom)
constr.set_monitoring_atom_predicate(monitoring_atom.literal)
if init_state_value:
initial_state_prime.append(monitoring_atom)
if constr.kind == ds.SOMETIMEBEFORE:
if true_init(I, constr.gd1):
raise ProblemUnsolvableException("PROBLEM NOT SOLVABLE: a sometime-before is violated in the initial state")
monitoring_atoms_counter += 1
for constr in C:
if constr.kind == ds.ALWAYS:
if not true_init(I, constr.gd1):
raise ProblemUnsolvableException("PROBLEM NOT SOLVABLE: an always is violated in the initial state")
return initial_state_prime, monitoring_atoms
def ITC(C):
for constr in C:
if constr.kind in [ds.ALWAYS, ds.SOMETIMEBEFORE, ds.ATMOSTONCE]:
yield constr
def LTC(C):
for constr in C:
if constr.kind in [ds.SOMETIME, ds.SOMETIMEAFTER]:
yield constr
def create_cond_eff(condition, eff):
conditional_effect = (condition, eff)
return conditional_effect
def add_cond_eff(E, cond_eff):
cond, eff = cond_eff
if cond.simplified() != ds.FALSE():
E.append(ds.Effect(cond, eff))
def manage_always_compilation(phi, a):
if OPTIMIZED:
if not can_falsify(a, phi):
return None, False
R = regression_aux(phi, a).simplified()
if R == phi:
return None, False
else:
return R, True
else:
R = regression_aux(phi, a).simplified()
if R == phi:
return None, False
else:
return R, True
def manage_amo_compilation(phi, m_atom, a, E):
if OPTIMIZED:
if not can_make_true(a, phi):
return None, False
monitoring_atom = ds.Literal(m_atom, False)
R = regression_aux(phi, a)
if R == phi:
return None, False
else:
rho = ds.Or([R.negate(), monitoring_atom.negate(), phi]).simplified()
add_cond_eff(E, create_cond_eff(R, monitoring_atom))
return rho, True
else:
monitoring_atom = ds.Literal(m_atom, False)
R = regression_aux(phi, a)
if R == phi:
return None, False
else:
rho = ds.Or([R.negate(), monitoring_atom.negate(), phi]).simplified()
add_cond_eff(E, create_cond_eff(R, monitoring_atom))
return rho, True
def manage_sb_compilation(phi, psi, m_atom, a, E):
if OPTIMIZED:
monitoring_atom = ds.Literal(m_atom, False)
added_precond = (None, False)
if can_make_true(a, phi):
R_phi = regression_aux(phi, a)
rho = ds.Or([R_phi.negate(), monitoring_atom]).simplified()
added_precond = (rho, True)
if can_make_true(a, psi):
R_psi = regression_aux(psi, a)
if R_psi != psi:
add_cond_eff(E, create_cond_eff(R_psi, monitoring_atom))
return added_precond
else:
monitoring_atom = ds.Literal(m_atom, False)
R_phi = regression_aux(phi, a)
if R_phi == phi:
added_precond = (None, False)
else:
rho = ds.Or([R_phi.negate(), monitoring_atom]).simplified()
added_precond = (rho, True)
R_psi = regression_aux(psi, a)
if R_psi != psi:
add_cond_eff(E, create_cond_eff(R_psi, monitoring_atom))
return added_precond
def manage_sometime_compilation(phi, m_atom, a, E):
if OPTIMIZED:
if can_make_true(a, phi):
monitoring_atom = ds.Literal(m_atom, False)
R = regression_aux(phi, a)
add_cond_eff(E, create_cond_eff(R, monitoring_atom))
else:
monitoring_atom = ds.Literal(m_atom, False)
R = regression_aux(phi, a)
if R != phi:
add_cond_eff(E, create_cond_eff(R, monitoring_atom))
def manage_sa_compilation(phi, psi, m_atom, a, E):
if OPTIMIZED:
R1 = regression_aux(phi, a)
R2 = regression_aux(psi, a)
monitoring_atom = ds.Literal(m_atom, False)
if can_make_true(a, phi) or can_falsify(a, psi):
cond = ds.And([R1, R2.negate()]).simplified()
cond_eff = create_cond_eff(cond, monitoring_atom.negate())
add_cond_eff(E, cond_eff)
if can_make_true(a, psi):
add_cond_eff(E, create_cond_eff(R2, monitoring_atom))
else:
R1 = regression_aux(phi, a)
R2 = regression_aux(psi, a)
monitoring_atom = ds.Literal(m_atom, False)
if phi != R1 or psi != R2:
cond = ds.And([R1, R2.negate()]).simplified()
cond_eff = create_cond_eff(cond, monitoring_atom.negate())
add_cond_eff(E, cond_eff)
if psi != R2:
add_cond_eff(E, create_cond_eff(R2, monitoring_atom))
def get_all_effects(a):
for effect in a.effects:
yield effect.effect
def get_relevant_constraints(a, relevancy_dict):
relevant_constrains = []
for eff in a.effects:
constr = relevancy_dict.get(eff.effect.literal, [])
for c in constr:
if c not in relevant_constrains:
relevant_constrains.append(c)
return relevant_constrains
def tcore(F, A, I, G, C):
relevancy_dict = build_relevancy_dict(C)
A_prime = []
G_prime = []
I_prime, F_prime = get_monitoring_atoms(C, I)
compiled_action = 0
for c in LTC(C):
monitoring_atom = ds.Literal(c.monitoring_atom, False)
G_prime.append(monitoring_atom)
G_prime = ds.And(G_prime)
for a in A:
E = []
relevant_constraints = get_relevant_constraints(a, relevancy_dict)
if len(relevant_constraints) > 0:
compiled_action += 1
for c in relevant_constraints:
if c.kind == ds.ALWAYS:
precondition, to_add = manage_always_compilation(c.gd1, a)
elif c.kind == ds.ATMOSTONCE:
precondition, to_add = manage_amo_compilation(c.gd1, c.monitoring_atom, a, E)
elif c.kind == ds.SOMETIMEBEFORE:
precondition, to_add = manage_sb_compilation(c.gd1, c.gd2, c.monitoring_atom, a, E)
if c.kind == ds.ALWAYS or c.kind == ds.ATMOSTONCE or c.kind == ds.SOMETIMEBEFORE:
if to_add:
a.precondition.append(precondition)
if c.kind == ds.SOMETIME:
manage_sometime_compilation(c.gd1, c.monitoring_atom, a, E)
elif c.kind == ds.SOMETIMEAFTER:
manage_sa_compilation(c.gd1, c.gd2, c.monitoring_atom, a, E)
for eff in E:
a.effects.append(eff)
if ds.FALSE() not in a.precondition:
A_prime.append(a)
G_new = ds.And([G, G_prime]).simplified()
#print("Compiled actions: {}".format(compiled_action))
return F + F_prime, A_prime, I + I_prime, G_new
def can_falsify(a, cond):
effects = [effect.effect for effect in a.effects]
atoms = get_all_atoms(cond)
for eff in effects:
neg = eff.negate()
if neg in atoms:
return True
return False
def can_make_true(a, cond):
effects = [effect.effect for effect in a.effects]
atoms = get_all_atoms(cond)
for eff in effects:
if eff in atoms:
return True
return False