-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeature.py
79 lines (69 loc) · 2.6 KB
/
feature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
from __future__ import annotations
from collections import Counter
import random
import logging
from typing import NamedTuple
logging.basicConfig(level="INFO")
logger = logging.getLogger()
class ExitCell(NamedTuple):
y: int
x: int
def read_parameters() -> tuple[int, int, int, list[ExitCell]]:
L, N, S = map(int, input().strip().split())
exit_cells = []
for i in range(N):
y, x = map(int, input().strip().split())
exit_cells.append(ExitCell(y, x))
return L, N, S, exit_cells
class FeatureLocator:
"""特徴ベクトルの座標を良い感じに決める"""
def __init__(self, L: int, N: int, S: int, exit_cells: list[ExitCell]):
self.L = L
self.N = N
self.S = S
self.exit_cells = exit_cells
def build_random_points(self, feature_size: int = 5, window_size: int = 4):
"""特徴ベクトルの座標をランダムに生成する"""
indices = list(random.sample(range(window_size * window_size), k=feature_size))
offset_ys = []
for idx in indices:
p, q = divmod(idx, window_size)
dy = p - window_size // 2
dx = q - window_size // 2
offset_ys.append((dy, dx))
return offset_ys
def build_optimized_points(self, feature_size: int = 5, window_size: int = 4, loop: int = 100):
min_loss = 10**16
min_offest_yx = None
min_counter = None
for i in range(loop):
offset_yx = self.build_random_points(feature_size, window_size)
counter = Counter()
for cy, cx in exit_cells:
for dy, dx in offset_yx:
y, x = (cy + dy) % L, (cx + dx) % L
idx = y * L + x
counter[idx] += 1
frequency = counter.most_common()
loss = sum([(v - 1)**3 for _, v in frequency])
if loss < min_loss:
min_loss = loss
min_offest_yx = offset_yx
min_counter = counter
logger.info(min_offest_yx)
logger.info([(idx, v) for idx, v in min_counter.most_common() if v > 1])
return min_offest_yx
if __name__ == "__main__":
L, N, S, exit_cells = read_parameters()
locator = FeatureLocator(L, N, S, exit_cells)
p = [[0 for x in range(L)] for y in range(L)]
offset_yx = locator.build_optimized_points()
for cy, cx in exit_cells:
for dy, dx in offset_yx:
y, x = (cy + dy) % L, (cx + dx) % L
p[y][x] += 1
for line in p:
print(*line)
print(-1, -1, -1)
for i in range(N):
print(0)