forked from kostya/benchmarks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhavlak.cpp
815 lines (679 loc) · 22 KB
/
havlak.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
// Copyright 2011 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "stdio.h"
#include <set>
#include <map>
#include <list>
#include <vector>
#include <algorithm>
// Forward Decls
class BasicBlock;
class MaoCFG;
//--- MOCKING CODE begin -------------------
//
// These data structures are stubbed out to make the code below easier
// to review.
//
// BasicBlockEdge only maintains two pointers to BasicBlocks.
//
class BasicBlockEdge {
public:
inline BasicBlockEdge(MaoCFG *cfg, int from, int to);
BasicBlock *GetSrc() { return from_; }
BasicBlock *GetDst() { return to_; }
private:
BasicBlock *from_, *to_;
};
// BasicBlock only maintains a vector of in-edges and
// a vector of out-edges.
//
class BasicBlock {
public:
typedef std::vector<BasicBlock *> EdgeVector;
explicit BasicBlock(int name) : name_(name) {
}
EdgeVector *in_edges() { return &in_edges_; }
EdgeVector *out_edges() { return &out_edges_; }
int GetNumPred() { return in_edges_.size(); }
int GetNumSucc() { return out_edges_.size(); }
void AddOutEdge(BasicBlock *to) { out_edges_.push_back(to); }
void AddInEdge(BasicBlock *from) { in_edges_.push_back(from); }
private:
EdgeVector in_edges_, out_edges_;
int name_;
};
// MaoCFG maintains a list of nodes.
//
class MaoCFG {
public:
typedef std::map<int, BasicBlock *> NodeMap;
typedef std::list<BasicBlockEdge *> EdgeList;
MaoCFG() : start_node_(NULL) {
}
~MaoCFG() {
for (NodeMap::iterator it = basic_block_map_.begin();
it != basic_block_map_.end(); ++it)
delete (*it).second;
for (EdgeList::iterator edge_it = edge_list_.begin();
edge_it != edge_list_.end(); ++edge_it)
delete (*edge_it);
}
BasicBlock *CreateNode(int name) {
BasicBlock *node;
NodeMap::iterator it = basic_block_map_.find(name);
if (it == basic_block_map_.end()) {
node = new BasicBlock(name);
basic_block_map_[name] = node;
} else {
node = (*it).second;
}
if (GetNumNodes() == 1)
start_node_ = node;
return node;
}
void AddEdge(BasicBlockEdge *edge) {
edge_list_.push_back(edge);
}
int GetNumNodes() {
return basic_block_map_.size();
}
BasicBlock *GetStartBasicBlock() {
return start_node_;
}
BasicBlock *GetDst(BasicBlockEdge *edge) {
return edge->GetDst();
}
BasicBlock *GetSrc(BasicBlockEdge *edge) {
return edge->GetSrc();
}
NodeMap *GetBasicBlocks() {
return &basic_block_map_;
}
private:
NodeMap basic_block_map_;
BasicBlock *start_node_;
EdgeList edge_list_;
};
//
//--- MOCKING CODE end -------------------
//
// SimpleLoop
//
// Basic representation of loops, a loop has an entry point,
// one or more exit edges, a set of basic blocks, and potentially
// an outer loop - a "parent" loop.
//
// Furthermore, it can have any set of properties, e.g.,
// it can be an irreducible loop, have control flow, be
// a candidate for transformations, and what not.
//
//
class SimpleLoop {
public:
typedef std::set<BasicBlock *> BasicBlockSet;
typedef std::set<SimpleLoop *> LoopSet;
SimpleLoop() : parent_(NULL), is_root_(false), nesting_level_(0),
depth_level_(0) {
}
void AddNode(BasicBlock *basic_block) {
basic_blocks_.insert(basic_block);
}
void AddChildLoop(SimpleLoop *loop) {
children_.insert(loop);
}
void Dump() {
// Simplified for readability purposes.
fprintf(stderr, "loop-%d, nest: %d, depth: %d\n",
counter_, nesting_level_, depth_level_);
}
LoopSet *GetChildren() {
return &children_;
}
// Getters/Setters
SimpleLoop *parent() { return parent_; }
int nesting_level() const { return nesting_level_; }
int depth_level() const { return depth_level_; }
int counter() const { return counter_; }
bool is_root() const { return is_root_; }
void set_parent(SimpleLoop *parent) {
parent_ = parent;
parent->AddChildLoop(this);
}
void set_is_root() { is_root_ = true; }
void set_counter(int value) { counter_ = value; }
void set_nesting_level(int level) {
nesting_level_ = level;
if (level == 0)
set_is_root();
}
void set_depth_level(int level) { depth_level_ = level; }
private:
BasicBlockSet basic_blocks_;
std::set<SimpleLoop *> children_;
SimpleLoop *parent_;
bool is_root_: 1;
int counter_;
int nesting_level_;
int depth_level_;
};
//
// LoopStructureGraph
//
// Maintain loop structure for a given CFG.
//
// Two values are maintained for this loop graph, depth, and nesting level.
// For example:
//
// loop nesting level depth
//----------------------------------------
// loop-0 2 0
// loop-1 1 1
// loop-3 1 1
// loop-2 0 2
//
class LoopStructureGraph {
public:
typedef std::list<SimpleLoop *> LoopList;
LoopStructureGraph() : root_(new SimpleLoop()),
loop_counter_(0) {
root_->set_nesting_level(0); // make it the root node
root_->set_counter(loop_counter_++);
AddLoop(root_);
}
~LoopStructureGraph() {
KillAll();
}
SimpleLoop *CreateNewLoop() {
SimpleLoop *loop = new SimpleLoop();
loop->set_counter(loop_counter_++);
return loop;
}
void KillAll() {
for (LoopList::iterator it = loops_.begin(); it != loops_.end(); ++it)
delete (*it);
}
void AddLoop(SimpleLoop *loop) {
loops_.push_back(loop);
}
void Dump() {
DumpRec(root_, 0);
}
void DumpRec(SimpleLoop *loop, int indent) {
// Simplified for readability purposes.
loop->Dump();
for (SimpleLoop::LoopSet::iterator liter = loop->GetChildren()->begin();
liter != loop->GetChildren()->end(); ++liter)
DumpRec(*liter, indent+1);
}
void CalculateNestingLevel() {
// link up all 1st level loops to artificial root node.
for (LoopList::iterator liter = loops_.begin();
liter != loops_.end(); ++liter) {
SimpleLoop *loop = *liter;
if (loop->is_root()) continue;
if (!loop->parent()) loop->set_parent(root_);
}
// recursively traverse the tree and assign levels.
CalculateNestingLevelRec(root_, 0);
}
void CalculateNestingLevelRec(SimpleLoop *loop, int depth) {
loop->set_depth_level(depth);
for (SimpleLoop::LoopSet::iterator liter = loop->GetChildren()->begin();
liter != loop->GetChildren()->end(); ++liter) {
CalculateNestingLevelRec(*liter, depth+1);
loop->set_nesting_level(std::max(loop->nesting_level(),
1+(*liter)->nesting_level()));
}
}
int GetNumLoops() const { return loops_.size(); }
SimpleLoop *root() const { return root_; }
private:
SimpleLoop *root_;
LoopList loops_;
int loop_counter_;
};
inline
BasicBlockEdge::BasicBlockEdge(MaoCFG *cfg,
int from_name,
int to_name) {
from_ = cfg->CreateNode(from_name);
to_ = cfg->CreateNode(to_name);
from_->AddOutEdge(to_);
to_->AddInEdge(from_);
cfg->AddEdge(this);
}
// External entry point.
int FindHavlakLoops(MaoCFG *CFG, LoopStructureGraph *LSG);
#include <stdio.h>
#include <list>
#include <set>
#include <vector>
#include <algorithm>
//======================================================
// Main Algorithm
//======================================================
//
// Union/Find algorithm after Tarjan, R.E., 1983, Data Structures
// and Network Algorithms.
//
class UnionFindNode {
public:
UnionFindNode() : parent_(NULL), bb_(NULL), loop_(NULL), dfs_number_(0) {
}
// Initialize this node.
//
void Init(BasicBlock *bb, int dfs_number) {
parent_ = this;
bb_ = bb;
dfs_number_ = dfs_number;
}
// Union/Find Algorithm - The find routine.
//
// Implemented with Path Compression (inner loops are only
// visited and collapsed once, however, deep nests would still
// result in significant traversals).
//
UnionFindNode *FindSet() {
typedef std::list<UnionFindNode *> NodeListType;
NodeListType nodeList;
UnionFindNode *node = this;
while (node != node->parent()) {
if (node->parent() != node->parent()->parent())
nodeList.push_back(node);
node = node->parent();
}
// Path Compression, all nodes' parents point to the 1st level parent.
NodeListType::iterator iter = nodeList.begin();
NodeListType::iterator end = nodeList.end();
for (; iter != end; ++iter)
(*iter)->set_parent(node->parent());
return node;
}
// Union/Find Algorithm - The union routine.
//
// We rely on path compression.
//
void Union(UnionFindNode *B) {
set_parent(B);
}
// Getters/Setters
//
UnionFindNode *parent() const { return parent_; }
BasicBlock *bb() const { return bb_; }
SimpleLoop *loop() const { return loop_; }
int dfs_number() const { return dfs_number_; }
void set_parent(UnionFindNode *parent) { parent_ = parent; }
void set_loop(SimpleLoop *loop) { loop_ = loop; }
private:
UnionFindNode *parent_;
BasicBlock *bb_;
SimpleLoop *loop_;
int dfs_number_;
};
//------------------------------------------------------------------
// Loop Recognition
//
// based on:
// Paul Havlak, Nesting of Reducible and Irreducible Loops,
// Rice University.
//
// We avoid doing tree balancing and instead use path compression
// to avoid traversing parent pointers over and over.
//
// Most of the variable names and identifiers are taken literally
// from this paper (and the original Tarjan paper mentioned above).
//-------------------------------------------------------------------
class HavlakLoopFinder {
public:
HavlakLoopFinder(MaoCFG *cfg, LoopStructureGraph *lsg) :
CFG_(cfg), lsg_(lsg) {
}
enum BasicBlockClass {
BB_TOP, // uninitialized
BB_NONHEADER, // a regular BB
BB_REDUCIBLE, // reducible loop
BB_SELF, // single BB loop
BB_IRREDUCIBLE, // irreducible loop
BB_DEAD, // a dead BB
BB_LAST // Sentinel
};
//
// Constants
//
// Marker for uninitialized nodes.
static const int kUnvisited = -1;
// Safeguard against pathologic algorithm behavior.
static const int kMaxNonBackPreds = (32*1024);
//
// Local types used for Havlak algorithm, all carefully
// selected to guarantee minimal complexity.
//
typedef std::vector<UnionFindNode> NodeVector;
typedef std::map<BasicBlock*, int> BasicBlockMap;
typedef std::list<int> IntList;
typedef std::set<int> IntSet;
typedef std::list<UnionFindNode*> NodeList;
typedef std::vector<IntList> IntListVector;
typedef std::vector<IntSet> IntSetVector;
typedef std::vector<int> IntVector;
typedef std::vector<char> CharVector;
//
// IsAncestor
//
// As described in the paper, determine whether a node 'w' is a
// "true" ancestor for node 'v'.
//
// Dominance can be tested quickly using a pre-order trick
// for depth-first spanning trees. This is why DFS is the first
// thing we run below.
//
bool IsAncestor(int w, int v, IntVector *last) {
return ((w <= v) && (v <= (*last)[w]));
}
// Iterators
//
typedef BasicBlock::EdgeVector::iterator BasicBlockIter;
//
// DFS - Depth-First-Search
//
// DESCRIPTION:
// Simple depth first traversal along out edges with node numbering.
//
int DFS(BasicBlock *current_node,
NodeVector *nodes,
BasicBlockMap *number,
IntVector *last,
const int current) {
(*nodes)[current].Init(current_node, current);
(*number)[current_node] = current;
int lastid = current;
for (BasicBlockIter outedges = current_node->out_edges()->begin();
outedges != current_node->out_edges()->end(); ++outedges) {
BasicBlock *target = *outedges;
if ((*number)[target] == kUnvisited)
lastid = DFS(target, nodes, number, last, lastid + 1);
}
(*last)[(*number)[current_node]] = lastid;
return lastid;
}
//
// FindLoops
//
// Find loops and build loop forest using Havlak's algorithm, which
// is derived from Tarjan. Variable names and step numbering has
// been chosen to be identical to the nomenclature in Havlak's
// paper (which is similar to the one used by Tarjan).
//
void FindLoops() {
if (!CFG_->GetStartBasicBlock()) return;
int size = CFG_->GetNumNodes();
IntSetVector non_back_preds(size);
IntListVector back_preds(size);
IntVector header(size);
CharVector type(size);
IntVector last(size);
NodeVector nodes(size);
BasicBlockMap number;
// Step a:
// - initialize all nodes as unvisited.
// - depth-first traversal and numbering.
// - unreached BB's are marked as dead.
//
for (MaoCFG::NodeMap::iterator bb_iter =
CFG_->GetBasicBlocks()->begin();
bb_iter != CFG_->GetBasicBlocks()->end(); ++bb_iter) {
number[(*bb_iter).second] = kUnvisited;
}
DFS(CFG_->GetStartBasicBlock(), &nodes, &number, &last, 0);
// Step b:
// - iterate over all nodes.
//
// A backedge comes from a descendant in the DFS tree, and non-backedges
// from non-descendants (following Tarjan).
//
// - check incoming edges 'v' and add them to either
// - the list of backedges (back_preds) or
// - the list of non-backedges (non_back_preds)
//
for (int w = 0; w < size; w++) {
header[w] = 0;
type[w] = BB_NONHEADER;
BasicBlock *node_w = nodes[w].bb();
if (!node_w) {
type[w] = BB_DEAD;
continue; // dead BB
}
if (node_w->GetNumPred()) {
for (BasicBlockIter inedges = node_w->in_edges()->begin();
inedges != node_w->in_edges()->end(); ++inedges) {
BasicBlock *node_v = *inedges;
int v = number[ node_v ];
if (v == kUnvisited) continue; // dead node
if (IsAncestor(w, v, &last))
back_preds[w].push_back(v);
else
non_back_preds[w].insert(v);
}
}
}
// Start node is root of all other loops.
header[0] = 0;
// Step c:
//
// The outer loop, unchanged from Tarjan. It does nothing except
// for those nodes which are the destinations of backedges.
// For a header node w, we chase backward from the sources of the
// backedges adding nodes to the set P, representing the body of
// the loop headed by w.
//
// By running through the nodes in reverse of the DFST preorder,
// we ensure that inner loop headers will be processed before the
// headers for surrounding loops.
//
for (int w = size-1; w >= 0; w--) {
NodeList node_pool; // this is 'P' in Havlak's paper
BasicBlock *node_w = nodes[w].bb();
if (!node_w) continue; // dead BB
// Step d:
IntList::iterator back_pred_iter = back_preds[w].begin();
IntList::iterator back_pred_end = back_preds[w].end();
for (; back_pred_iter != back_pred_end; back_pred_iter++) {
int v = *back_pred_iter;
if (v != w)
node_pool.push_back(nodes[v].FindSet());
else
type[w] = BB_SELF;
}
// Copy node_pool to worklist.
//
NodeList worklist;
NodeList::iterator niter = node_pool.begin();
NodeList::iterator nend = node_pool.end();
for (; niter != nend; ++niter)
worklist.push_back(*niter);
if (!node_pool.empty())
type[w] = BB_REDUCIBLE;
// work the list...
//
while (!worklist.empty()) {
UnionFindNode x = *worklist.front();
worklist.pop_front();
// Step e:
//
// Step e represents the main difference from Tarjan's method.
// Chasing upwards from the sources of a node w's backedges. If
// there is a node y' that is not a descendant of w, w is marked
// the header of an irreducible loop, there is another entry
// into this loop that avoids w.
//
// The algorithm has degenerated. Break and
// return in this case.
//
size_t non_back_size = non_back_preds[x.dfs_number()].size();
if (non_back_size > kMaxNonBackPreds) {
lsg_->KillAll();
return;
}
IntSet::iterator non_back_pred_iter =
non_back_preds[x.dfs_number()].begin();
IntSet::iterator non_back_pred_end =
non_back_preds[x.dfs_number()].end();
for (; non_back_pred_iter != non_back_pred_end; non_back_pred_iter++) {
UnionFindNode y = nodes[*non_back_pred_iter];
UnionFindNode *ydash = y.FindSet();
if (!IsAncestor(w, ydash->dfs_number(), &last)) {
type[w] = BB_IRREDUCIBLE;
non_back_preds[w].insert(ydash->dfs_number());
} else {
if (ydash->dfs_number() != w) {
NodeList::iterator nfind = find(node_pool.begin(),
node_pool.end(), ydash);
if (nfind == node_pool.end()) {
worklist.push_back(ydash);
node_pool.push_back(ydash);
}
}
}
}
}
// Collapse/Unionize nodes in a SCC to a single node
// For every SCC found, create a loop descriptor and link it in.
//
if (!node_pool.empty() || (type[w] == BB_SELF)) {
SimpleLoop* loop = lsg_->CreateNewLoop();
// At this point, one can set attributes to the loop, such as:
//
// the bottom node:
// IntList::iterator iter = back_preds[w].begin();
// loop bottom is: nodes[*backp_iter].node);
//
// the number of backedges:
// back_preds[w].size()
//
// whether this loop is reducible:
// type[w] != BB_IRREDUCIBLE
//
// TODO(rhundt): Define those interfaces in the Loop Forest.
//
nodes[w].set_loop(loop);
for (niter = node_pool.begin(); niter != node_pool.end(); niter++) {
UnionFindNode *node = (*niter);
// Add nodes to loop descriptor.
header[node->dfs_number()] = w;
node->Union(&nodes[w]);
// Nested loops are not added, but linked together.
if (node->loop())
node->loop()->set_parent(loop);
else
loop->AddNode(node->bb());
}
lsg_->AddLoop(loop);
} // node_pool.size
} // Step c
} // FindLoops
private:
MaoCFG *CFG_; // current control flow graph.
LoopStructureGraph *lsg_; // loop forest.
}; // HavlakLoopFinder
// Constant instantiations.
//
const int HavlakLoopFinder::kUnvisited;
const int HavlakLoopFinder::kMaxNonBackPreds;
// External entry point.
int FindHavlakLoops(MaoCFG *CFG, LoopStructureGraph *LSG) {
HavlakLoopFinder finder(CFG, LSG);
finder.FindLoops();
return LSG->GetNumLoops();
}
#include <stdio.h>
#include <list>
#include <map>
#include <set>
#include <vector>
#include <algorithm>
int buildDiamond(MaoCFG *cfg, int start) {
int bb0 = start;
new BasicBlockEdge(cfg, bb0, bb0 + 1);
new BasicBlockEdge(cfg, bb0, bb0 + 2);
new BasicBlockEdge(cfg, bb0 + 1, bb0 + 3);
new BasicBlockEdge(cfg, bb0 + 2, bb0 + 3);
return bb0 + 3;
}
void buildConnect(MaoCFG *cfg, int start, int end) {
new BasicBlockEdge(cfg, start, end);
}
int buildStraight(MaoCFG *cfg, int start, int n) {
for (int i = 0; i < n; i++) {
buildConnect(cfg, start + i, start + i + 1);
}
return start + n;
}
int buildBaseLoop(MaoCFG *cfg, int from) {
int header = buildStraight(cfg, from, 1);
int diamond1 = buildDiamond(cfg, header);
int d11 = buildStraight(cfg, diamond1, 1);
int diamond2 = buildDiamond(cfg, d11);
int footer = buildStraight(cfg, diamond2, 1);
buildConnect(cfg, diamond2, d11);
buildConnect(cfg, diamond1, header);
buildConnect(cfg, footer, from);
footer = buildStraight(cfg, footer, 1);
return footer;
}
int main(int argc, char *argv[]) {
fprintf(stderr, "Welcome to LoopTesterApp, C++ edition\n");
MaoCFG cfg;
LoopStructureGraph lsg;
fprintf(stderr, "Constructing Simple CFG...\n");
cfg.CreateNode(0); // top
buildBaseLoop(&cfg, 0);
cfg.CreateNode(1); // bottom
new BasicBlockEdge(&cfg, 0, 2);
fprintf(stderr, "15000 dummy loops\n");
for (int dummyloops = 0; dummyloops < 15000; ++dummyloops) {
LoopStructureGraph * lsglocal = new LoopStructureGraph();
FindHavlakLoops(&cfg, lsglocal);
delete(lsglocal);
}
fprintf(stderr, "Constructing CFG...\n");
int n = 2;
for (int parlooptrees = 0; parlooptrees < 10; parlooptrees++) {
cfg.CreateNode(n + 1);
buildConnect(&cfg, 2, n + 1);
n = n + 1;
for (int i = 0; i < 100; i++) {
int top = n;
n = buildStraight(&cfg, n, 1);
for (int j = 0; j < 25; j++) {
n = buildBaseLoop(&cfg, n);
}
int bottom = buildStraight(&cfg, n, 1);
buildConnect(&cfg, n, top);
n = bottom;
}
buildConnect(&cfg, n, 1);
}
fprintf(stderr, "Performing Loop Recognition\n1 Iteration\n");
int num_loops = FindHavlakLoops(&cfg, &lsg);
fprintf(stderr, "Another 50 iterations...\n");
int sum = 0;
for (int i = 0; i < 50; i++) {
LoopStructureGraph lsg;
fprintf(stderr, ".");
sum += FindHavlakLoops(&cfg, &lsg);
}
fprintf(stderr,
"\nFound %d loops (including artificial root node)"
"(%d)\n", num_loops, sum);
}