forked from zlzeng/DeepFloorplan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
net.py
361 lines (282 loc) · 14.5 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import numpy as np
import tensorflow as tf # using tf 1.10.1
from tensorflow.contrib.slim.nets import vgg
import os
import sys
import glob
import time
import random
from scipy import ndimage
from scipy.misc import imread, imresize, imsave
sys.path.append('./utils/')
from rgb_ind_convertor import *
from util import fast_hist
from tf_record import read_record, read_bd_rm_record
GPU_ID = '0'
def data_loader_bd_rm_from_tfrecord(batch_size=1):
paths = open('../dataset/r3d_train.txt', 'r').read().splitlines()
loader_dict = read_bd_rm_record('../dataset/r3d.tfrecords', batch_size=batch_size, size=512)
num_batch = len(paths) // batch_size
return loader_dict, num_batch
class Network(object):
"""docstring for Network"""
def __init__(self, dtype=tf.float32):
print 'Initial nn network object...'
self.dtype = dtype
self.pre_train_restore_map = {'vgg_16/conv1/conv1_1/weights':'FNet/conv1_1/W', # {'checkpoint_scope_var_name':'current_scope_var_name'} shape must be the same
'vgg_16/conv1/conv1_1/biases':'FNet/conv1_1/b',
'vgg_16/conv1/conv1_2/weights':'FNet/conv1_2/W',
'vgg_16/conv1/conv1_2/biases':'FNet/conv1_2/b',
'vgg_16/conv2/conv2_1/weights':'FNet/conv2_1/W',
'vgg_16/conv2/conv2_1/biases':'FNet/conv2_1/b',
'vgg_16/conv2/conv2_2/weights':'FNet/conv2_2/W',
'vgg_16/conv2/conv2_2/biases':'FNet/conv2_2/b',
'vgg_16/conv3/conv3_1/weights':'FNet/conv3_1/W',
'vgg_16/conv3/conv3_1/biases':'FNet/conv3_1/b',
'vgg_16/conv3/conv3_2/weights':'FNet/conv3_2/W',
'vgg_16/conv3/conv3_2/biases':'FNet/conv3_2/b',
'vgg_16/conv3/conv3_3/weights':'FNet/conv3_3/W',
'vgg_16/conv3/conv3_3/biases':'FNet/conv3_3/b',
'vgg_16/conv4/conv4_1/weights':'FNet/conv4_1/W',
'vgg_16/conv4/conv4_1/biases':'FNet/conv4_1/b',
'vgg_16/conv4/conv4_2/weights':'FNet/conv4_2/W',
'vgg_16/conv4/conv4_2/biases':'FNet/conv4_2/b',
'vgg_16/conv4/conv4_3/weights':'FNet/conv4_3/W',
'vgg_16/conv4/conv4_3/biases':'FNet/conv4_3/b',
'vgg_16/conv5/conv5_1/weights':'FNet/conv5_1/W',
'vgg_16/conv5/conv5_1/biases':'FNet/conv5_1/b',
'vgg_16/conv5/conv5_2/weights':'FNet/conv5_2/W',
'vgg_16/conv5/conv5_2/biases':'FNet/conv5_2/b',
'vgg_16/conv5/conv5_3/weights':'FNet/conv5_3/W',
'vgg_16/conv5/conv5_3/biases':'FNet/conv5_3/b'}
# basic layer
def _he_uniform(self, shape, regularizer=None, trainable=None, name=None):
name = 'W' if name is None else name+'/W'
# size = (k_h, k_w, in_dim, out_dim)
kernel_size = np.prod(shape[:2]) # k_h*k_w
fan_in = shape[-2]*kernel_size # fan_out = shape[-1]*kernel_size
# compute the scale value
s = np.sqrt(1. /fan_in)
# create variable and specific GPU device
with tf.device('/device:GPU:'+GPU_ID):
w = tf.get_variable(name, shape, dtype=self.dtype,
initializer=tf.random_uniform_initializer(minval=-s, maxval=s),
regularizer=regularizer, trainable=trainable)
return w
def _constant(self, shape, value=0, regularizer=None, trainable=None, name=None):
name = 'b' if name is None else name+'/b'
with tf.device('/device:GPU:'+GPU_ID):
b = tf.get_variable(name, shape, dtype=self.dtype,
initializer=tf.constant_initializer(value=value),
regularizer=regularizer, trainable=trainable)
return b
def _conv2d(self, tensor, dim, size=3, stride=1, rate=1, pad='SAME', act='relu', norm='none', G=16, bias=True, name='conv'):
"""pre activate => norm => conv
"""
in_dim = tensor.shape.as_list()[-1]
size = size if isinstance(size, (tuple, list)) else [size, size]
stride = stride if isinstance(stride, (tuple, list)) else [1, stride, stride, 1]
rate = rate if isinstance(rate, (tuple, list)) else [1, rate, rate, 1]
kernel_shape = [size[0], size[1], in_dim, dim]
w = self._he_uniform(kernel_shape, name=name)
b = self._constant(dim, name=name) if bias else 0
if act == 'relu':
tensor = tf.nn.relu(tensor, name=name+'/relu')
elif act == 'sigmoid':
tensor = tf.nn.sigmoid(tensor, name=name+'/sigmoid')
elif act == 'softplus':
tensor = tf.nn.softplus(tensor, name=name+'/softplus')
elif act =='leaky_relu':
tensor = tf.nn.leaky_relu(tensor, name=name+'/leaky_relu')
else:
norm = 'none'
if norm == 'gn': # group normalization after acitvation
# normalize
# tranpose: [bs, h, w, c] to [bs, c, h, w] following the paper
x = tf.transpose(tensor, [0, 3, 1, 2])
N, C, H, W = x.get_shape().as_list()
G = min(G, C)
x = tf.reshape(x, [-1, G, C // G, H, W])
mean, var = tf.nn.moments(x, [2, 3, 4], keep_dims=True)
x = (x - mean) / tf.sqrt(var + 1e-6)
# per channel gamma and beta
with tf.device('/device:GPU:'+GPU_ID):
gamma = tf.get_variable(name+'/gamma', [C], dtype=self.dtype, initializer=tf.constant_initializer(1.0))
beta = tf.get_variable(name+'/beta', [C], dtype=self.dtype, initializer=tf.constant_initializer(0.0))
gamma = tf.reshape(gamma, [1, C, 1, 1])
beta = tf.reshape(beta, [1, C, 1, 1])
tensor = tf.reshape(x, [-1, C, H, W]) * gamma + beta
# tranpose: [bs, c, h, w, c] to [bs, h, w, c] following the paper
tensor = tf.transpose(tensor, [0, 2, 3, 1])
out = tf.nn.conv2d(tensor, w, strides=stride, padding=pad, dilations=rate, name=name) + b # default no bias
return out
def _upconv2d(self, tensor, dim, size=4, stride=2, pad='SAME', act='relu', name='upconv'):
[batch_size, h, w, in_dim] = tensor.shape.as_list()
size = size if isinstance(size, (tuple, list)) else [size, size]
stride = stride if isinstance(stride, (tuple, list)) else [1, stride, stride, 1]
kernel_shape = [size[0], size[1], dim, in_dim]
W = self._he_uniform(kernel_shape, name=name)
if pad == 'SAME':
out_shape = [batch_size, h*stride[1], w*stride[2], dim]
else:
out_shape = [batch_size, (h-1)*stride[1]+size[0],
(w-1)*strdie[2]+size[1], dim]
out = tf.nn.conv2d_transpose(tensor, W, output_shape=tf.stack(out_shape),
strides=stride, padding=pad, name=name)
# reset shape information
out.set_shape(out_shape)
if act == 'relu':
out = tf.nn.relu(out, name=name+'/relu')
elif act == 'sigmoid':
out = tf.nn.sigmoid(out, name=name+'/sigmoid')
else:
pass
return out
def _max_pool2d(self, tensor, size=2, stride=2, pad='VALID'):
size = size if isinstance(size, (tuple, list)) else [1, size, size, 1]
stride = stride if isinstance(stride, (tuple, list)) else [1, stride, stride, 1]
#
size = [1, size[0], size[1], 1] if len(size)==2 else size
stride = [1, stride[0], stride[1], 1] if len(stride)==2 else stride
out = tf.nn.max_pool(tensor, size, stride, pad)
return out
# following three function used for combining context features
def _constant_kernel(self, shape, value=1.0, diag=False, flip=False, regularizer=None, trainable=None, name=None):
name = 'fixed_w' if name is None else name+'/fixed_w'
with tf.device('/device:GPU:'+GPU_ID):
if not diag:
k = tf.get_variable(name, shape, dtype=self.dtype,
initializer=tf.constant_initializer(value=value),
regularizer=regularizer, trainable=trainable)
else:
w = tf.eye(shape[0], num_columns=shape[1])
if flip:
w = tf.reshape(w, (shape[0], shape[1], 1))
w = tf.image.flip_left_right(w)
w = tf.reshape(w, shape)
k = tf.get_variable(name, None, dtype=self.dtype, # constant initializer dont specific shape
initializer=w,
regularizer=regularizer, trainable=trainable)
return k
def _context_conv2d(self, tensor, dim=1, size=7, diag=False, flip=False, stride=1, name='cconv'):
"""
Implement using identity matrix, combine neighbour pixels without bias, current only accept depth 1 of input tensor
Args:
diag: create diagnoal identity matrix
transpose: transpose the diagnoal matrix
"""
in_dim = tensor.shape.as_list()[-1] # suppose to be 1
size = size if isinstance(size, (tuple, list)) else [size, size]
stride = stride if isinstance(stride, (tuple, list)) else [1, stride, stride, 1]
kernel_shape = [size[0], size[1], in_dim, dim]
w = self._constant_kernel(kernel_shape, diag=diag, flip=flip, trainable=False, name=name)
out = tf.nn.conv2d(tensor, w, strides=stride, padding='SAME', name=name)
return out
def _non_local_context(self, tensor1, tensor2, stride=4, name='non_local_context'):
"""Use 1/stride image size of identity one rank kernel to combine context features, default is half image size, embedding between encoder and decoder part
Args:
stride: define the neighbour size
"""
assert tensor1.shape.as_list() == tensor2.shape.as_list(), "input tensor should have same shape"
[N, H, W, C] = tensor1.shape.as_list()
hs = H // stride if (H // stride) > 1 else (stride-1)
vs = W // stride if (W // stride) > 1 else (stride-1)
hs = hs if (hs%2!=0) else hs+1
vs = hs if (vs%2!=0) else vs+1
# compute attention map
a = self._conv2d(tensor1, dim=C, name=name+'/fa1')
a = self._conv2d(a, dim=C, name=name+'/fa2')
a = self._conv2d(a, dim=1, size=1, act='linear', norm=None, name=name+'/a')
a = tf.nn.sigmoid(a, name=name+'/a_sigmoid')
# reduce the tensor depth
x = self._conv2d(tensor2, dim=C, name=name+'/fx1')
x = self._conv2d(x, dim=1, size=1, act='linear', norm=None, name=name+'/x')
# pre attention, prevent the text
x = a*x
h = self._context_conv2d(x, size=[hs, 1], name=name+'/cc_h') # h
v = self._context_conv2d(x, size=[1, vs], name=name+'/cc_v') # v
d1 = self._context_conv2d(x, size=[hs, vs], diag=True, name=name+'/cc_d1') # d
d2 = self._context_conv2d(x, size=[hs, vs], diag=True, flip=True, name=name+'/cc_d2') # d_t
# double attention, prevent blurring
c1 = a*(h+v+d1+d2)
# c1 = (h+v+d1+d2)
# expand to dim
c1 = self._conv2d(c1, dim=C, size=1, act='linear', norm=None, name=name+'/expand')
# c1 = self._conv2d(c1, dim=C, name=name+'/conv1') # contextural feature
# further convolution to learn richer feature
features = tf.concat([tensor2, c1], axis=3, name=name+'/in_context_concat')
out = self._conv2d(features, dim=C, name=name+'/conv2')
# return out, a
return out, None
def _up_bilinear(self, tensor, dim, shape, name='upsample'):
# [N, H, W, C] = tensor.shape.as_list()
out = self._conv2d(tensor, dim=dim, size=1, act='linear', name=name+'/1x1_conv')
return tf.image.resize_images(out, shape)
def forward(self, inputs, init_with_pretrain_vgg=False, pre_trained_model='./vgg16/vgg_16.ckpt'):
# feature extraction part and also the share network
reuse_fnet = len([v for v in tf.global_variables() if v.name.startswith('FNet')]) > 0
with tf.variable_scope('FNet', reuse=reuse_fnet):
# feature extraction
self.conv1_1 = self._conv2d(inputs, dim=64, name='conv1_1')
self.conv1_2 = self._conv2d(self.conv1_1, dim=64, name='conv1_2')
self.pool1 = self._max_pool2d(self.conv1_2) # 256 => /2
self.conv2_1 = self._conv2d(self.pool1, dim=128, name='conv2_1')
self.conv2_2 = self._conv2d(self.conv2_1, dim=128, name='conv2_2')
self.pool2 = self._max_pool2d(self.conv2_2) # 128 => /4
self.conv3_1 = self._conv2d(self.pool2, dim=256, name='conv3_1')
self.conv3_2 = self._conv2d(self.conv3_1, dim=256, name='conv3_2')
self.conv3_3 = self._conv2d(self.conv3_2, dim=256, name='conv3_3')
self.pool3 = self._max_pool2d(self.conv3_3) # 64 => /8
self.conv4_1 = self._conv2d(self.pool3, dim=512, name='conv4_1')
self.conv4_2 = self._conv2d(self.conv4_1, dim=512, name='conv4_2')
self.conv4_3 = self._conv2d(self.conv4_2, dim=512, name='conv4_3')
self.pool4 = self._max_pool2d(self.conv4_3) # 32 => /16
self.conv5_1 = self._conv2d(self.pool4, dim=512, name='conv5_1')
self.conv5_2 = self._conv2d(self.conv5_1, dim=512, name='conv5_2')
self.conv5_3 = self._conv2d(self.conv5_2, dim=512, name='conv5_3')
self.pool5 = self._max_pool2d(self.conv5_3) # 16 => /32
# init feature extraction part from pre-train vgg16
if init_with_pretrain_vgg:
tf.train.init_from_checkpoint(pre_trained_model, self.pre_train_restore_map)
# input size for logits predict
[n, h, w, c] = inputs.shape.as_list()
reuse_cw_net = len([v for v in tf.global_variables() if v.name.startswith('CWNet')]) > 0
with tf.variable_scope('CWNet', reuse=reuse_cw_net):
# upsample
up2 = (self._upconv2d(self.pool5, dim=256, act='linear', name='up2_1') # 32 => /16
+ self._conv2d(self.pool4, dim=256, act='linear', name='pool4_s'))
self.up2_cw = self._conv2d(up2, dim=256, name='up2_3')
up4 = (self._upconv2d(self.up2_cw, dim=128, act='linear', name='up4_1') # 64 => /8
+ self._conv2d(self.pool3, dim=128, act='linear', name='pool3_s'))
self.up4_cw = self._conv2d(up4, dim=128, name='up4_3')
up8 = (self._upconv2d(self.up4_cw, dim=64, act='linear', name='up8_1') # 128 => /4
+ self._conv2d(self.pool2, dim=64, act='linear', name='pool2_s'))
self.up8_cw = self._conv2d(up8, dim=64, name='up8_2')
up16 = (self._upconv2d(self.up8_cw, dim=32, act='linear', name='up16_1') # 256 => /2
+ self._conv2d(self.pool1, dim=32, act='linear', name='pool1_s'))
self.up16_cw = self._conv2d(up16, dim=32, name='up16_2')
# predict logits
logits_cw = self._up_bilinear(self.up16_cw, dim=3, shape=(h, w), name='logits')
# decode network for room type detection
reuse_rnet = len([v for v in tf.global_variables() if v.name.startswith('RNet')]) > 0
with tf.variable_scope('RNet', reuse=reuse_rnet):
# upsample
up2 = (self._upconv2d(self.pool5, dim=256, act='linear', name='up2_1') # 32 => /16
+ self._conv2d(self.pool4, dim=256, act='linear', name='pool4_s'))
up2 = self._conv2d(up2, dim=256, name='up2_2')
up2, _ = self._non_local_context(self.up2_cw, up2, name='context_up2')
up4 = (self._upconv2d(up2, dim=128, act='linear', name='up4_1') # 64 => /8
+ self._conv2d(self.pool3, dim=128, act='linear', name='pool3_s'))
up4 = self._conv2d(up4, dim=128, name='up4_2')
up4, _ = self._non_local_context(self.up4_cw, up4, name='context_up4')
up8 = (self._upconv2d(up4, dim=64, act='linear', name='up8_1') # 128 => /4
+ self._conv2d(self.pool2, dim=64, act='linear', name='pool2_s'))
up8 = self._conv2d(up8, dim=64, name='up8_2')
up8, _ = self._non_local_context(self.up8_cw, up8, name='context_up8')
up16 = (self._upconv2d(up8, dim=32, act='linear', name='up16_1') # 256 => /2
+ self._conv2d(self.pool1, dim=32, act='linear', name='pool1_s'))
up16 = self._conv2d(up16, dim=32, name='up16_2')
self.up16_r, self.a = self._non_local_context(self.up16_cw, up16, name='context_up16')
# predict logits
logits_r = self._up_bilinear(self.up16_r, dim=9, shape=(h, w), name='logits')
return logits_r, logits_cw