-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstage1_DD.py
278 lines (225 loc) · 9.39 KB
/
stage1_DD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import os
import sys
import random
import argparse
from tqdm import tqdm
import numpy as np
from PIL import ImageFile
import torch
import torch.backends.cudnn as cudnn
from torch.utils.data import Subset
from utils.averager import Averager
from utils.criterion import FocalLoss
from utils.load_config import load_config
from source.model import BaselineClassifier
from source.stratify import DomainStratifying
from source.dataset import Pseudolabel_Dataset, hierarchical_dataset, get_dataloader
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
ImageFile.LOAD_TRUNCATED_IMAGES = True
torch.multiprocessing.set_sharing_strategy("file_system")
def main(args):
dashed_line = "-" * 80
# to make directories for saving models and files if not exist
args.saved_path = f"stratify/{args.method}/{args.discriminator}"
os.makedirs(f"{args.saved_path}/{args.num_subsets}_subsets/", exist_ok=True)
print(dashed_line)
# load source domain data (raw)
print("Load source domain data...")
source_data_raw, source_data_log = hierarchical_dataset(args.source_data, args, mode="raw")
source_data = Pseudolabel_Dataset(source_data_raw, np.full(len(source_data_raw), 0))
print(source_data_log, end="")
print(dashed_line)
# load target domain data (raw)
print("Load target domain data...")
target_data_raw, target_data_log = hierarchical_dataset(args.target_data, args, mode="raw")
print(target_data_log, end="")
try:
select_data = list(np.load(args.select_data))
except:
print("\n [*][WARNING] NO available select_data!")
print(" [*][WARNING] You are using all target domain data!\n")
select_data = list(range(len(target_data_raw)))
print(dashed_line)
# setup model
print("Init model")
model = BaselineClassifier(args)
# load pretrained model (baseline)
pretrained_state_dict = torch.load(args.saved_model)
print(f"Load pretrained model from {args.saved_model}")
try:
model.load_state_dict(pretrained_state_dict)
except:
print("\n [*][WARNING] The pre-trained weights do not match the model! Carefully check!\n")
state_dict = model.state_dict()
for key in list(state_dict.keys()):
if (("module." + key) in pretrained_state_dict.keys()):
state_dict[key] = pretrained_state_dict["module." + key].data
# else:
# print(key)
model.load_state_dict(state_dict)
model = model.to(device)
# print(model.state_dict())
# training part
if (args.train == True):
filtered_parameters = []
params_num = []
for p in filter(lambda p: p.requires_grad, model.parameters()):
filtered_parameters.append(p)
params_num.append(np.prod(p.size()))
print(f"Trainable params num: {sum(params_num)}")
print(dashed_line)
# setup loss (not contain sigmoid function)
criterion = FocalLoss().to(device)
# load target data adjust (use select data)
target_data_adjust_raw = Subset(target_data_raw, select_data)
target_data_adjust = Pseudolabel_Dataset(target_data_adjust_raw, np.full(len(target_data_adjust_raw), 1))
# get dataloader
source_loader = get_dataloader(args, source_data, args.batch_size, shuffle=True, aug=args.aug)
target_loader = get_dataloader(args, target_data_adjust, args.batch_size, shuffle=True, aug=args.aug)
# set up iter dataloader
source_loader_iter = iter(source_loader)
# set up optimizer
optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
# set up scheduler
scheduler = torch.optim.lr_scheduler.OneCycleLR(
optimizer,
max_lr=args.lr,
cycle_momentum=False,
div_factor=20,
final_div_factor=1000,
total_steps=args.epochs * (len(select_data) // args.batch_size + 1),
)
# train
train_loss_avg = Averager()
print(dashed_line)
print("Start Training Domain Discriminator (DD)...\n")
for epoch in range(args.epochs):
model.train()
for batch in tqdm(target_loader):
images_target_tensor, labels_target = batch
try:
images_source_tensor, labels_source = next(source_loader_iter)
except StopIteration:
del source_loader_iter
source_loader_iter = iter(source_loader)
images_source_tensor, labels_source = next(source_loader_iter)
images_tensor = torch.cat((images_source_tensor, images_target_tensor), 0)
labels = labels_source + labels_target
images = images_tensor.to(device)
preds = model(images)
loss = criterion(preds, torch.Tensor(labels).view(-1,1).to(device))
# optimize
model.zero_grad(set_to_none=True)
loss.backward()
torch.nn.utils.clip_grad_norm_(
model.parameters(), args.grad_clip
) # gradient clipping with 5 (Default)
optimizer.step()
train_loss_avg.add(loss)
scheduler.step()
lr = optimizer.param_groups[0]["lr"]
valid_log = f"\nEpoch {epoch + 1}/{args.epochs}:\n"
valid_log += f"Train_loss: {train_loss_avg.val():0.5f}, Current_lr: {lr:0.7f}\n"
print(valid_log)
train_loss_avg.reset()
torch.save(
model.state_dict(),
f"{args.saved_path}/DD_{args.discriminator}_discriminator.pth",
)
print(dashed_line)
try:
model.load_state_dict(
torch.load(f"{args.saved_path}/DD_{args.discriminator}_discriminator.pth")
)
print(f"Load model from {args.saved_path}/DD_{args.discriminator}_discriminator.pth")
except:
print("\n [*][WARNING] NO checkpoint!")
print(" [*][WARNING] You are using the baseline model!")
print(" [*][WARNING] You haven't trained the discriminator yet!\n")
model.eval()
# Domain Stratifying (Domain Discriminator - DD)
DD = DomainStratifying(args, select_data)
DD.stratify_DD(target_data_raw, model)
print("\nAll information is saved in " + f"{args.saved_path}/")
print("The trained weights are saved at " + f"{args.saved_path}/DD_{args.discriminator}_discriminator.pth")
print(dashed_line)
return
if __name__ == "__main__":
""" Argument """
parser = argparse.ArgumentParser()
config = load_config("config/DD.yaml")
parser.set_defaults(**config)
parser.add_argument(
"--source_data", default="data/train/synth/", help="path to source domain data",
)
parser.add_argument(
"--target_data", default="data/train/real/", help="path to target domain data",
)
parser.add_argument(
"--select_data",
required=True,
help="path to select data file exp: select_data.npy",
)
parser.add_argument(
"--saved_model",
required=True,
help="path to pretrained model (backbone model)",
)
parser.add_argument(
"--batch_size", type=int, default=128, help="input batch size",
)
parser.add_argument(
"--batch_size_val", type=int, default=512, help="input batch size val",
)
parser.add_argument(
"--epochs", type=int, default=20, help="number of epochs to train for",
)
""" Adaptation """
parser.add_argument(
"--num_subsets",
type=int,
required=True,
help="hyper-parameter n, number of subsets partitioned from target domain data",
)
parser.add_argument(
"--discriminator",
type=str,
required=True,
help="choose discriminator, CRNN|TRBA",
)
parser.add_argument(
"--train", action="store_true", default=False, help="training or not",
)
parser.add_argument(
"--aug", action="store_true", default=False, help="augmentation or not",
)
args = parser.parse_args()
if args.discriminator == "CRNN": # CRNN = NVBC
args.Transformation = "None"
args.FeatureExtraction = "VGG"
args.SequenceModeling = "None"
args.Prediction = "CTC"
elif args.discriminator == "TRBA": # TRBA
args.Transformation = "TPS"
args.FeatureExtraction = "ResNet"
args.SequenceModeling = "None"
args.Prediction = "None"
""" Seed and GPU setting """
random.seed(args.manual_seed)
np.random.seed(args.manual_seed)
torch.manual_seed(args.manual_seed)
torch.cuda.manual_seed(args.manual_seed)
cudnn.benchmark = True # it fasten training
cudnn.deterministic = True
if sys.platform == "win32":
args.workers = 0
args.gpu_name = "_".join(torch.cuda.get_device_name().split())
if sys.platform == "linux":
args.CUDA_VISIBLE_DEVICES = os.environ["CUDA_VISIBLE_DEVICES"]
else:
args.CUDA_VISIBLE_DEVICES = 0 # for convenience
command_line_input = " ".join(sys.argv)
print(
f"Command line input: CUDA_VISIBLE_DEVICES={args.CUDA_VISIBLE_DEVICES} python {command_line_input}"
)
main(args)